【題目】已知是兩個(gè)不同的平面,是兩條不同的直線,有如下四個(gè)命題:

,則; ②,則;

,則; ④,則

其中真命題為_________(填所有真命題的序號(hào)).

【答案】①③

【解析】分析:,根據(jù)線面垂直的性質(zhì)和面面平行的定義判斷命題正確;,根據(jù)線面、面面垂直的定義與性質(zhì)判斷命題錯(cuò)誤;,根據(jù)線面平行的性質(zhì)與面面垂直的定義判斷命題正確;,根據(jù)線面、面面平行與垂直的性質(zhì)判斷命題錯(cuò)誤.

詳解:對(duì)于,當(dāng)l⊥α,l⊥β時(shí),根據(jù)線面垂直的性質(zhì)和面面平行的定義知α∥β,①正確;

對(duì)于②,l⊥α,α⊥β時(shí),有l(wèi)β或lβ,∴②錯(cuò)誤;

對(duì)于③,l∥α,l⊥β時(shí),根據(jù)線面平行的性質(zhì)與面面垂直的定義知α⊥β,∴③正確;

對(duì)于④,l∥α,α⊥β時(shí),有l(wèi)β或lβ或lβ或l與β相交,∴④錯(cuò)誤.

綜上,以上真命題為①③.

故答案為:①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)滿足,定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求函數(shù)的解析式;

(2)若函數(shù)上有零點(diǎn),求的取值范圍;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)共有高一學(xué)生800.在一次數(shù)學(xué)與地理的水平測(cè)試則試后,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣分析,先將800人按001,002,…,800進(jìn)行編號(hào).

1)如果從第8行第7列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢查的3個(gè)人的編號(hào);

(下面摘取了隨機(jī)數(shù)表的第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

人數(shù)

數(shù)學(xué)

優(yōu)秀

良好

及格

地理

優(yōu)秀

7

20

5

良好

9

18

6

及格

4

成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫娜藬?shù)共有.

①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求的值:

②在地理成績(jī)及格的學(xué)生中,已知,,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地級(jí)市共有中學(xué)生,其中有學(xué)生在年享受了“國(guó)家精準(zhǔn)扶貧”政策,在享受“國(guó)家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項(xiàng)教育基金”,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元.經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計(jì)了該地級(jí)市年到年共年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份時(shí)代表年,時(shí)代表年,……依此類推,且(單位:萬(wàn)元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)

(1)估計(jì)該市年人均可支配年收入為多少萬(wàn)元?

(2)試問(wèn)該市年的“專項(xiàng)教育基金”的財(cái)政預(yù)算大約為多少萬(wàn)元?

附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后,生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

注: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形是邊長(zhǎng)為4的正方形,的中點(diǎn).

(1)在圖中作出并指明平面和平面的交線;

(2)求證:

(3)當(dāng)時(shí),求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廈門市從2003年起每年都舉行國(guó)際馬拉松比賽,每年馬拉松比賽期間,都會(huì)吸引許多外地游客到廈門旅游,這將極大地推進(jìn)廈門旅游業(yè)的發(fā)展,旅游部門將近六年馬拉松比賽期間外地游客數(shù)量統(tǒng)計(jì)如下表:

年份

2012

2013

2014

2015

2016

2017

比賽年份編號(hào)

外地游客人數(shù)(萬(wàn)人)

(1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;(精確到

(2)若用對(duì)數(shù)回歸模型擬合的關(guān)系,可得回歸方程,且相關(guān)指數(shù),請(qǐng)用相關(guān)指數(shù)說(shuō)明選擇哪個(gè)模型更合適.(精確到

參考數(shù)據(jù):,,

參考公式:回歸方程中,;相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的收費(fèi)標(biāo)準(zhǔn)為2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有人獨(dú)立來(lái)該租車點(diǎn)則車騎游.各租一車一次.設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).

)求出甲、乙所付租車費(fèi)用相同的概率;

)求甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案