解關于x的不等式
ax-1
x2-x-2
>0(a≥0)
考點:其他不等式的解法
專題:不等式的解法及應用
分析:不等式等價于(ax-1)(x+1)(x-2)>0,再分當a=0時、當a>0時、當a=
1
2
時、當0<
1
a
1
2
時、當a>
1
2
時五種情況,分別求得不等式的解集.
解答: 解:原不等式等價于(ax-1)(x+1)(x-2)>0,
當a=0時,原不等式等價于(x-2)(x+1)<0,解得-1<x<2,
此時原不等式得解集為{x|-1<x<2};
當a>0時,原不等式等價于(x-
1
a
)(x+1)(x-2)>0,
當a=
1
2
 時,原不等式的解集為 {x|x>-1,且 x≠2};  
當0<
1
a
1
2
 時,不等式的解集為{x|x>
1
a
,或-1<x<2 };
當a>
1
2
 時,原不等式的解集為{x|-1<x<
1
a
,或x>2}.
點評:本題主要考查分式不等式的解法,體現(xiàn)了等價轉化和分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費,預計當每件產(chǎn)品的售價為x元(7≤x≤11)時,一年的銷售量為(12-x)2萬件.
(Ⅰ)求該分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關系式;
(Ⅱ)當每件產(chǎn)品的售價為多少元時,該分公司一年的利潤L最大?并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{a2n-1}是公差為2的等差數(shù)列,數(shù)列{a2n}是公比為3的等比數(shù)列,數(shù)列{an}的前n項和為Sn(n∈N*),已知S3=a4,a3+a5=a4+2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若當n∈N*時,不等式2S2n-na2n-1<λa2n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,E是平面ABCD外一點,AE⊥平面CDE.若四邊形ABCD是正方形,M,N分別是AE,BC的中點.
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)求證:MN∥平面CDE;
(Ⅲ)若二面角B-CD-E的平面角的大小為30°,求BD與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F是橢圓C的右焦點,A,B是橢圓短軸的兩個端點,且△ABF是正三角形,
(Ⅰ)求橢圓C的離心率;
(Ⅱ)直線l與以AB為直徑的圓O相切,并且被橢圓C截得的弦長的最大值為2
3
,求橢圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sin
x
2
cos
x
2
+2cos2
x
2

(1)求函數(shù)f(x)的對稱軸;
(2)已知f(α)=
13
5
,α∈(
π
2
,π)  求sin(2α+
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,A(3,0),B(0,3),C(2cosθ,2sinθ)
(1)若
AC
BC
,求sin2θ的值;
(2)
AC
BC
能否共線?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖,則體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=sin2x-2sinxcosx,則f(
π
4
)=
 

查看答案和解析>>

同步練習冊答案