【題目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且對任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| ﹣ |的恒成立,則實數(shù)a的取值范圍為 .
【答案】[3﹣ ,0)
【解析】解:易知 在x∈[3,4]上均為增函數(shù),
不妨設x1<x2 , 則 等價于 ,
即 ;
令 ,則h(x)在x∈[3,4]為減函數(shù),
則 在x∈(3,4)上恒成立,
∴ 恒成立;
令 ,
∴ ,
∴u(x)為減函數(shù),∴u(x)在x∈[3,4]的最大值為 ;
綜上,實數(shù)a的取值范圍為[3﹣ ,0).
所以答案是:[3﹣ ,0).
【考點精析】利用利用導數(shù)研究函數(shù)的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知橢圓的離心率為,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A,B兩點,是否存在實數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù),當x∈(-3,2)時,>0,當x∈(-,-3)(2,+)時,<0
(I)求a,b的值;
(II)若不等式的解集為R,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險的基本保費為a(單位:元),繼續(xù)購買該保險的投保人成為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續(xù)保人一年內出險次數(shù)與相應概率如下:
一年內出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(1)求一續(xù)保人本年度的保費高于基本保費的概率;
(2)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=blnx,g(x)=ax2﹣x(a∈R).
(1)若曲線f(x)與g(x)在公共點A(1,0)處有相同的切線,求實數(shù)a、b的值;
(2)在(1)的條件下,證明f(x)≤g(x)在(0,+∞)上恒成立;
(3)若a=1,b>2e,求方程f(x)﹣g(x)=x在區(qū)間(1,eb)內實根的個數(shù)(e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC= .管理部門欲在該地從M到D修建小路:在 上選一點P(異于M,N兩點),過點P修建與BC平行的小路PQ.
(1)若∠PBC= ,求PQ的長度;
(2)當點P選擇在何處時,才能使得修建的小路 與PQ及QD的總長最。坎⒄f明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個元素的子集記為A1 , A2 , A3 , …, .
設A1 , A2 , A3 , …, 中所有元素之和為Sn .
(1)求S4 , S5 , S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 , 是非零不共線的向量,設 = + ,定義點集M={K| = },當K1 , K2∈M時,若對于任意的r≥2,不等式| |≤c| |恒成立,則實數(shù)c的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】去年“十一”期間,昆曲高速公路車輛較多.某調查公司在曲靖收費站從7座以下小型汽車中按進收費站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進行抽樣調查,將他們在某段高速公路的車速()分成六段:,,,,,后,得到如圖的頻率分布直方圖.
(I)調查公司在抽樣時用到的是哪種抽樣方法?
(II)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(III)若從這40輛車速在的小型汽車中任意抽取2輛,求抽出的2輛車車速都在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com