已知數(shù)列是公比為3的等比數(shù)列,數(shù)列,

(1)求證:數(shù)列為等差數(shù)列;

(2)若的通項公式;

(3)若的第幾項起,后面的項都滿足>1。

解:(1)

從而,數(shù)列為等差數(shù)列。

(2)由①知

 

 

(3)∵

假設第m項后有

即m項后原命題等價于

 

故數(shù)列。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:閱讀理解

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項an;并用解析幾何中的有關思想方法來解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學過的知識,把問題轉化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為3,公差為2的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{2an-1}是公比為3的等比數(shù)列,且a1=1,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}的前n項和Sn滿足Sn=2n2+2n-2,且cn=(an-
12
)•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=3,an+2=3an+1-2an(n∈N).
(1)證明{an+1-an}是公比為2的等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案