橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率為
 
分析:根據(jù)題意,作出示意圖,可得△ABF2為等邊三角形,即|OF2|=
3
2
|AB|,可得c=
3
b
,由此結(jié)合b2=a2-c2即可解出橢圓的離心率為
3
2
解答:解:設(shè)橢圓的焦點(diǎn)分別為F1、F2,上頂點(diǎn)為B,下頂點(diǎn)為A,如圖所示精英家教網(wǎng)
∵一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,即△ABF2為等邊三角形
∴|OF2|=
3
2
|AB|,可得c=
3
b

平方得c2=3b2=3(a2-c2),所以3a2=4c2,
可得e2=
c2
a2
=
3
4
,得e=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題給出橢圓的一個(gè)焦點(diǎn)與短軸構(gòu)成正三角形,求橢圓的離心率,著重考查了正三角形的性質(zhì)、橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率e=
c
a
為( 。
A、
3
2
B、
3
4
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率e=
c
a
為( 。
A.
3
2
B.
3
4
C.
2
2
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省岳陽(yáng)市華容縣一中高二(上)期末數(shù)學(xué)試卷(選修2-1及2-2第一節(jié))(解析版) 題型:選擇題

橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年福建省泉州一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個(gè)等邊三角形,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案