如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.求證:

(1)圓心O在直線AD上;
(2)點(diǎn)C是線段GD的中點(diǎn).
(1)見解析   (2)見解析
證明:(1)∵AB=AC,AF=AE,∴CF=BE.
又∵CF=CD,BD=BE,
∴CD=BD.
∴AD是∠CAB的平分線.
∴內(nèi)切圓圓心O在直線AD上.

(2)連接DF,由(1)知,DH是⊙O的直徑,
∴∠DFH=90°,
∴∠FDH+∠FHD=90°.
由題易知∠G+∠FHD=90°,
∴∠FDH=∠G.
∵⊙O與AC相切于點(diǎn)F,
∴∠AFH=∠GFC=∠FDH,
∴∠GFC=∠G.∴CG=CF=CD,
∴點(diǎn)C是線段GD的中點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)直線和圓相交于點(diǎn),則弦的垂直平分線的方程是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點(diǎn).
(1)若|AB|=,求直線l的傾斜角;
(2)若點(diǎn)P(1,1)滿足2,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn),若在圓上存在點(diǎn),使得,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知PA是⊙O的切線,A是切點(diǎn),直線PO交⊙O于B,C兩點(diǎn),D是OC的中點(diǎn),連接AD并延長交⊙O于點(diǎn)E,若PA=2,∠APB=30°,則AE=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,AD,AE,BC分別與圓O切于點(diǎn)D,E,F(xiàn),延長AF與圓O交于另一點(diǎn)G.給出下列三個(gè)結(jié)論:

①AD+AE=AB+BC+CA;
②AF·AG=AD·AE;
③△AFB∽△ADG.
其中正確結(jié)論的序號是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓G:+y2=1.過軸上的動(dòng)點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線的最大距離;
(2)①當(dāng)實(shí)數(shù)時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·湖北模擬]若直線y=x+b與曲線y=3-有公共點(diǎn),則b的取值范圍是(  )
A.[1-2,1+2]B.[1-,3]
C.[-1,1+2]D.[1-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2013•浙江)直線y=2x+3被圓x2+y2﹣6x﹣8y=0所截得的弦長等于 _________ 

查看答案和解析>>

同步練習(xí)冊答案