【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(diǎn)(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:由f(x)=2lnx+ax﹣ (a∈R),求導(dǎo)f′(x)= +a+ ,
當(dāng)x=2時(shí),f′(2)=1+a+f′(2),
∴a=﹣1,
設(shè)切點(diǎn)為(2,2ln2+2a﹣2f′(2)),則切線方程y﹣(2ln2+2a﹣2f′(2))=f′(2)(x﹣2),
將(﹣4,2ln2)代入切線方程,2ln2﹣2ln2﹣2a+2f′(2))=﹣6f′(2),則f′(2)=﹣ ,
∴f′(x)= ﹣1﹣ = ≤0,
∴f(x)在(0,+∞)單調(diào)遞減
(2)解:由不等式 恒成立,則 (2lnx+ )>m,
令φ(x)=2lnx+ ,(x>0)求導(dǎo)φ′(x)= ﹣ ﹣1=﹣( ﹣1)2≤0,
∴φ(x)在(0,+∞)單調(diào)遞減,
由φ(1)=0,
則當(dāng)0<x<1時(shí),φ(x)>0,
當(dāng)x>1時(shí),φ(x)<0,
∴ (2lnx+ )在(0,+∞)恒大于0,
∴m≤0,
實(shí)數(shù)m的取值范圍(﹣∞,0]
【解析】(1)求導(dǎo),當(dāng)x=2時(shí),代入f′(x),即可求得a=﹣1,求得點(diǎn)斜式方程,將(﹣4,2ln2)代入點(diǎn)斜式方程,即可求得f′(2),即可求得函數(shù)f(x)的單調(diào)區(qū)間;(2)由題意可知 (2lnx+ )>m,構(gòu)造輔助函數(shù),求導(dǎo),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)性質(zhì),求得 (2lnx+ )最小值,即可求得實(shí)數(shù)m的取值范圍.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個(gè)命題中,真命題是( ) ①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每30分鐘從生產(chǎn)流水線中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣方法是系統(tǒng)抽樣;
②兩個(gè)變量的線性相關(guān)程度越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
③兩個(gè)分類變量X與Y的觀測(cè)值κ2 , 若κ2越小,則說明“X與Y有關(guān)系”的把握程度越大;
④隨機(jī)變量X~N(0,1),則P(|X|<1)=2P(X<1)﹣1.
A.①④
B.②④
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 .
(1)求角B的大;
(2)若b= ,a+c=3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式的解集為;
(1)若,求的取值范圍;
(2)若存在兩個(gè)不相等負(fù)實(shí)數(shù)、,使得,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),滿足:“對(duì)于任意,都有,對(duì)于任意的,都有”,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù) 用戶對(duì)其產(chǎn)品的滿意度的評(píng)分,得到A地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和B地區(qū)用戶滿意度評(píng)分的頻率分布表.A地區(qū)用戶滿意度評(píng)分的頻率分布直方圖
B地區(qū)用戶滿意度評(píng)分的頻率分布表
滿意度評(píng)分分組 | [50,60) | [50,60) | [50,60) | [50,60) | [50,60) |
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)(I)在答題卡上作出B地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過此圖比較兩地區(qū)滿意度評(píng)分的平均值及分 散 程度.(不要求計(jì)算出具體值,給出結(jié)論即可)
B地區(qū)用戶滿意度評(píng)分的頻率分布直方圖
(2)(II)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度評(píng)分分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
估計(jì)那個(gè)地區(qū)的用戶的滿意度等級(jí)為不滿意的概率大,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:(1)若ab > cd,則 +>+ ;(2) + > + 是|a-b| < |c-d|的充要條件
(1)(I)若abcd,則++
(2)(II)++是|a-b||c-d|的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015新課標(biāo)II)已知橢圓C:9x2+y2=m2(m0),直線l不過原點(diǎn)O且不平行于坐軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)(I)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)(II)若l過點(diǎn)(,m)延長(zhǎng)線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)如圖,橢圓E:的離心率是,過點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A,B兩點(diǎn),當(dāng)直線l平行與x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為2.
(1)求橢圓E的方程;
(2)在平面直角坐標(biāo)系xOy中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com