一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
(1),(2),(3)當木梁的體積V最大時,其表面積S也最大.
【解析】
試題分析:(1)解答實際問題關(guān)鍵讀懂題意.本題所求體積為直四棱柱體積,體積為高與底面積的乘積.高為圓木的長,底面積為梯形的面積.利用角表示出梯形上下底及高,就可得到所求關(guān)系式. (2)先求出函數(shù)的導數(shù),再根據(jù)導數(shù)為零時,定義區(qū)間導數(shù)值的正負討論其單調(diào)性,研究其圖像變化規(guī)律,確定其極值、最值.本題函數(shù)先增后減,在時,取極大值,也是最大值.(3)本題實質(zhì)是求表面積的最大值,并判斷取最大值時是否成立.首先先建立表面積的函數(shù)關(guān)系式.表面積由兩部分組成,一是底面積,二是側(cè)面積. 底面積為梯形的面積,有兩個. 側(cè)面積為梯形周長與圓木的長的乘積.再利用導數(shù)求出其最大值及取最大值時角的取值.
試題解析:(1)梯形的面積
=,. 2分
體積. 3分
(2).
令,得,或(舍).
∵,∴. 5分
當時,,為增函數(shù);
當時,,為減函數(shù). 7分
∴當時,體積V最大. 8分
(3)木梁的側(cè)面積=,.
=,. 10分
設(shè),.∵,
∴當,即時,最大. 12分
又由(2)知時,取得最大值,
所以時,木梁的表面積S最大. 13分
綜上,當木梁的體積V最大時,其表面積S也最大. 14分
考點:利用導數(shù)求函數(shù)最值
科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調(diào)研考試理科數(shù)學試卷(解析版) 題型:填空題
四棱錐P ? ABCD 的底面ABCD是邊長為2的正方形,PA⊥底面ABCD且PA = 4,則PC與底面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)理科數(shù)學試卷(解析版) 題型:解答題
設(shè),且,其中當為偶數(shù)時,;當為奇數(shù)時,.
(1)證明:當,時,;
(2)記,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)理科數(shù)學試卷(解析版) 題型:填空題
已知,,則的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)理科數(shù)學試卷(解析版) 題型:填空題
若復數(shù)z =(為虛數(shù)單位),則|z|= .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)文科數(shù)學試卷(解析版) 題型:填空題
如圖,在△ABC中,BO為邊AC上的中線,,設(shè)∥,若,則的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)文科數(shù)學試卷(解析版) 題型:填空題
執(zhí)行如圖所示的算法流程圖,則最后輸出的等于 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三5月信息卷文科數(shù)學試卷(解析版) 題型:解答題
如果數(shù)列滿足:且,則稱數(shù)列為階“歸化數(shù)列”.
(1)若某4階“歸化數(shù)列”是等比數(shù)列,寫出該數(shù)列的各項;
(2)若某11階“歸化數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(3)若為n階“歸化數(shù)列”,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com