精英家教網 > 高中數學 > 題目詳情

【題目】已知定義在R上的函數f(x)=ex+mx2﹣m(m>0),當x1+x2=1時,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實數x1的取值范圍是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

【答案】D
【解析】解:∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立, ∴不等式f(x1)﹣f(x2)>f(1)﹣f(0)恒成立,
又∵x1+x2=1,
∴不等式f(x1)﹣f(1﹣x1)>f(1)﹣f(1﹣1)恒成立,
設g(x)=f(x)﹣f(1﹣x),
∵f(x)=ex+mx2﹣m(m>0),
∴g(x)=ex﹣e1x+m(2x﹣1),
則g′(x)=ex+e1x+2m>0,∴g(x)在R上單調遞增,
∴不等式g(x1)>g(1)恒成立,
∴x1>1,
故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數列{ }的前n項和為Sn , 則S1S2S3…S10=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機廠商推出一次智能手機,現對500名該手機使用者(200名女性,300名男性)進行調查,對手機進行打分,打分的頻數分布表如下:

女性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

頻數

20

40

80

50

10

男性用戶

分值區(qū)間

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

頻數

45

75

90

60

30


(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大。ú挥嬎憔唧w值,給出結論即可);
(2)根據評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取3名用戶,求3名用戶評分小于90分的人數的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列的前項和,對任意,都有為常數)

(1)當時,求;

(2)當時,

(。┣笞C:數列是等差數列;

(ⅱ)若對任意,必存在使得,已知,且

求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分12分)已知不等式ax23x6>4的解集為{x|x<1x>b},

1)求a,b;

2)解不等式ax2-(acbxbc<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 為參數)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線 的極坐標方程為 .
(1)將曲線 的極坐標方程化為直角坐標方程;
(2)設點M的直角坐標為 ,直線l與曲線C的交點為A,B,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,角的對邊分別為,向量(

,滿足.

(1)求角的大;

(2)設 , 有最大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高中社團進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次是否開通“微博”的調查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調查分別得到如圖所示統(tǒng)計表和各年齡段人數頻率分布直方圖:
完成以下問題:
(Ⅰ)補全頻率分布直方圖并求n , a , p的值;
(Ⅱ)從[40,50)歲年齡段的“時尚族”中采用分層抽樣法抽取18人參加網絡時尚達人大賽,其中選取3人作為領隊,記選取的3名領隊中年齡在[40,45)歲的人數為X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,.

(1)若,求使得成立的的集合;

(2)當時,函數只有一個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案