已知無(wú)窮等比數(shù)列{an}的前n項(xiàng)和Sn=
13n
+a(n∈N*)
,且a是常數(shù),則此無(wú)窮等比數(shù)列各項(xiàng)的和等于
 
(用數(shù)值作答).
分析:先由等比數(shù)列的性質(zhì)求出a=-1,此無(wú)窮等比數(shù)列各項(xiàng)的和結(jié)合極限的運(yùn)算,計(jì)算可得答案.
解答:解:a1=S1=
1
3
+a
,
a2=S2-S1=(
1
9
+a)-(
1
3
+a)=-
2
9

a3=S3-S2=(
1
27
+a)-(
1
9
+a) =-
2
27
,
∵a1,a2,a3成等比數(shù)列,
4
81
=(
1
3
+a)× (-
2
27
)
,解得a=-1.
S=
lim
n→∞
Sn =
lim
n→∞
(
1
3n
+a) =a=-1

故答案:-1.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知無(wú)窮等比數(shù)列{an}的前n項(xiàng)的積為Tn,且a1>1,a2008a2009>1,(a2008-1)(a2009-1)<0,則這個(gè)數(shù)列中使Tn>1成立的最大正整數(shù)n的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮等比數(shù)列{an}的前n項(xiàng)和Sn=
1
3n
+a
(n∈N*),且a是常數(shù),則此無(wú)窮等比數(shù)列各項(xiàng)的和是( 。
A、
1
3
B、-
1
3
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知無(wú)窮等比數(shù)列{an}的前n項(xiàng)和為Sn,各項(xiàng)的和為S,且
lim
n→∞
(Sn-2S)=1
,則其首項(xiàng)a1的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮等比數(shù)列{an}的公比q≠-1,前n項(xiàng)和為Sn,若集合P={x|x= },則集合P的子集個(gè)數(shù)為(    )

A.3            B.4              C.7             D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案