2.解不等式x-3x2>-2的解集是(-$\frac{2}{3}$,1).

分析 把不等式化為一般形式,進行因式分解,求出解集即可.

解答 解:不等式x-3x2>-2可化為3x2-x-2<0,
即(3x+2)(x-1)<0,
解得-$\frac{2}{3}$<x<1,
所以原不等式的解集是(-$\frac{2}{3}$,1).
故答案為:(-$\frac{2}{3}$,1).

點評 本題考查了一元二次不等式的解法與應(yīng)用問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.把參數(shù)方程$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}\right.$化為普通方程,并說明它表示什么曲線:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知冪函數(shù)y=xa的圖象,當0<x<1時,在直線y=x的下方,當x>1時,在直線y=x的上方,則有理數(shù)a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=(x-2)0+$\frac{1}{{\sqrt{9-{x^2}}}}$的定義域為{x|-3<x<3且x≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某糧食店經(jīng)銷小麥,年銷售量為6000千克,每千克小麥進貨價為2.8元,銷售價為3.4元,全年進貨若干次,每次的進貨量均為x千克(1000≤x≤600000),運費為100元/次,并且全年小麥的總存儲費用為1.5x元.
(1)用x(千克)表示該糧食店經(jīng)銷小麥的年利潤y(元);
(2)每次進貨量為多少千克時,能使年利潤y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若(2x-1)-2>(x+1)-2,則x的取值范圍為0<x<2且x≠$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.二項式(1-3x)5的展開式中x3的系數(shù)為-270(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出下列命題:
①對空間任意兩個向量$\overrightarrow a,\overrightarrow b$($\overrightarrow b$≠$\overrightarrow 0$),則$\overrightarrow a$∥$\overrightarrow b$的充要條件是存在實數(shù)λ,使得$\overrightarrow b=λ\overrightarrow a$;   
②若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a=\overrightarrow 0或\overrightarrow b=\overrightarrow 0$;  
③若$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$不能構(gòu)成空間的一個基底,則O,A,B,C四點共面;  
④對于非零向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,則$(\overrightarrow a•\overrightarrow b)\overrightarrow c=\overrightarrow a(\overrightarrow b•\overrightarrow c)$一定成立.
正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(3)的值等于-1.

查看答案和解析>>

同步練習(xí)冊答案