2.已知a=$\frac{1}{2}$,b=${2^{\frac{1}{2}}}$,c=log32,則( 。
A.b>a>cB.c>b>aC.b>c>aD.a>b>c

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=$\frac{1}{2}$,
b=${2^{\frac{1}{2}}}$>20=1,
$\frac{1}{2}=lo{g}_{3}\sqrt{3}$<c=log32<log33=1,
∴b>c>a.
故選:C.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.定義在R上的奇函數(shù)f(x)滿足f(2)=1,且f(x+2)=f(x)+f(2),求f(3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(2,0),設(shè)A,B為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),AF的中點(diǎn)為M,BF的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上,直線AB的斜率為$\frac{3\sqrt{7}}{7}$,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}是公差不為零的等差數(shù)列,a1=1且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{2an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知3x=2y=12,則$\frac{1}{x}$+$\frac{2}{y}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,將一個(gè)正方體的表面展開,直線AB與直線CD在原來正方體中的位置關(guān)系是( 。 
A.平行B.相交并垂直C.相交且成60°角D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=-cos2x-4t•sin$\frac{x}{2}$cos$\frac{x}{2}$+2t2-6t+2(x∈R),其中t∈R,將f(x)的最小值記為g(t)
 (1)求g(t)的表達(dá)式;
(2)當(dāng)-1<t<1時(shí),要使關(guān)于t的方程g(t)=kt有且僅有一個(gè)實(shí)根,求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x-1)=x2-2x,則f(x)=x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD為菱形,PD⊥平面ABCD,連接AC、BD,交于點(diǎn)F,AC=6,BD=8,E是棱PB上的動(dòng)點(diǎn),△AEC面積的最小值是3,連接DE,
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案