分析 做出棱臺的高和斜高,利用勾股定理計算斜高,代入面積和體積公式計算即可.
解答 解:過B1作棱臺的高B1E,垂足為E,過E作EF⊥BC交BC于F,連結B1F.
∵B1E⊥平面ABCD,BC?平面ABCD,
∴B1E⊥BC,又BC⊥EF,EF∩B1E=E,
∴BC⊥平面B1EF,
∴B1F⊥BC,
∵B1E=4,EF=$\frac{1}{2}$(10-4)=3,∴B1F=5,
∴S${\;}_{梯形BC{C}_{1}{B}_{1}}$=$\frac{1}{2}$(4+10)×5=35,
∴棱臺的表面積S=42+102+4×35=256,
棱臺的體積V=$\frac{1}{3}$(42+102+$\sqrt{{4}^{2}•1{0}^{2}}$)×4=208.
點評 本題考查了棱臺的結構特征,表面積和體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | .若m⊥n,m⊥α,n∥β,則α∥β | B. | 若m∥α,n∥β,α∥β,則m∥n | ||
C. | .若m⊥α,n∥β,α∥β,則m⊥n | D. | .若m∥n,m∥α,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | -2$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com