5.某校為了研究“學(xué)生的性別”和“對待某項運動的喜愛程度”是否有關(guān),運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算k=6.669,則認為“學(xué)生性別與支持活動有關(guān)系”的犯錯誤的概率不超過( 。
附:
P(K2≥k00.1000.0500.0250.0100.001
k02.706 3.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

分析 把觀測值同臨界值進行比較.得到“學(xué)生性別與支持活動有關(guān)系”的犯錯誤的概率.

解答 解:因為K2=6.669>6.635,對照表格:

P(k2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
所以認為“學(xué)生性別與支持活動有關(guān)系”的犯錯誤的概率不超過1%.
故選:B.

點評 本題考查獨立性檢驗知識的運用,正確對照臨界值表是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ$\overrightarrow{AH}$=$\frac{\overrightarrow{AB}}{tanC}$+$\frac{\overrightarrow{AC}}{tanB}$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某縣農(nóng)民的月收入ξ服從正態(tài)分布N(1000,402),則此縣農(nóng)民中月收入在1000元到1080元間的人數(shù)的百分比為47.72%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x2-1|
(1)解不等式f(x)≤2+2x;
(2)設(shè)a>0,若關(guān)于x的不等式f(x)+5≤ax解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是調(diào)查某地區(qū)男女中學(xué)生是否喜歡理科的等高條形圖,從如圖可以看出該地區(qū)的中學(xué)生( 。
A.性別與是否喜歡理科無關(guān)B.女生中喜歡理科的比為80%
C.男生比女生喜歡理科的可能性大D.男生中喜歡理科的比例為80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線y=kx-k與拋物線y2=4x交于A,B兩點,若|AB|=4,則弦AB的中點到y(tǒng)軸的距離為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$cos2x+sinxcosx.
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{{\sqrt{3}}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在極坐標系中,關(guān)于曲線C:ρ=4sin(θ-$\frac{π}{3}$)的下列判斷中正確的是(  )
A.曲線C關(guān)于點(2,$\frac{π}{3}$)對稱B.曲線C關(guān)于極點(0,0)對稱
C.曲線C關(guān)于直線θ=$\frac{5π}{6}$對稱D.曲線C關(guān)于直線θ=$\frac{π}{3}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某隧道的截面圖由矩形ABCD和拋物線型拱頂DEC組成(E為拱頂DEC的最高點),以AB所在直線為x軸,以AB的中點為坐標原點,建立平面直角坐標系xOy,已知拱頂DEC的方程為y=-$\frac{1}{4}$x2+6(-4≤x≤4).
(1)求tan∠AEB的值;
(2)現(xiàn)欲在拱頂上某點P處安裝一個交通信息采集裝置,為了獲得最佳采集效果,需要點P對隧道底AB的張角∠APB最大,求此時點P到AB的距離.

查看答案和解析>>

同步練習(xí)冊答案