【題目】如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,,分別為,的中點(diǎn).
(1求異面直角與所成角的大小;
(2)求直線與平面所成角的正弦值.
【答案】(1) (2)
【解析】
(1) 以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系.利用向量與的夾角公式計(jì)算可得;
(2) 設(shè)直線與平面所成的角為,利用計(jì)算可得答案.
(1)∵,平面平面,平面平面,平面,
∴平面.
∵,∴平面.
如圖所示,以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系.
∵,∴,,,,
∴,.
∴,
∴異面直線與所成角的大小為.
(2)由(1)知,,,∴,,.
設(shè)平面的法向量為,
則由,可得,令,則,,
∴.
設(shè)直線與平面所成的角為,則
∴直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司租用一個(gè)門店作展館,準(zhǔn)備對(duì)其公司生產(chǎn)的某型產(chǎn)品進(jìn)行為期一年的展出。為此,需對(duì)門店進(jìn)行裝修,展出結(jié)束,門店不再使用,現(xiàn)市面上有某品牌的型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過小時(shí),經(jīng)銷商對(duì)型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下頻率分布直方圖:
門店裝修時(shí),需安裝該品牌節(jié)能燈支(同種型號(hào)).經(jīng)了解,型瓦和B型瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝。已知型和型節(jié)能燈每支的價(jià)格分別為元、元,當(dāng)?shù)厣虡I(yè)電價(jià)為元/千瓦時(shí)。假定該店面一年周轉(zhuǎn)期的照明時(shí)間為小時(shí),若正常營(yíng)業(yè)期間燈壞了立即購(gòu)買同型燈管更換。(用頻率估計(jì)概率)
(1)根據(jù)頻率直方圖估算B型節(jié)能燈的平均使用壽命;
(2)根據(jù)統(tǒng)計(jì)知識(shí),若一支燈管一年內(nèi)需要更換的概率為,那么支燈管一年內(nèi)估計(jì)需要更換支.若該商家新店面全部安裝型節(jié)能燈,試估計(jì)一年內(nèi)需更換的支數(shù);
(3)若只考慮燈的成本和消耗電費(fèi),你認(rèn)為該商家應(yīng)選擇哪種型號(hào)的節(jié)能燈,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為4,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)(不與點(diǎn)重合).
(Ⅰ)當(dāng),且直線 軸時(shí), 求四邊形的面積;
(Ⅱ)設(shè),直線與直線相交于點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,為線段的中點(diǎn),為線段上的一點(diǎn).
(1)證明:平面平面.
(2)若,二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線L: y=x+m與拋物線y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線L過拋物線焦點(diǎn),求線段 |AB|的長(zhǎng)度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,,,平面平面.
(1)證明:平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若只有一個(gè)零點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面 ABCD為矩形,側(cè)面為正三角形,且平面平面 E 為 PD 中點(diǎn),AD=2.
(1)證明平面AEC丄平面PCD;
(2)若二面角的平面角滿足,求四棱錐 的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com