【題目】劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長(zhǎng)期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(jī)(總分150分)與理綜成績(jī)(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
理綜分?jǐn)?shù)y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
參考數(shù)據(jù)及公式: .
(1)求出y關(guān)于x的線性回歸方程;
(2)若小汪高考數(shù)學(xué)110分,請(qǐng)你預(yù)測(cè)他理綜得分約為多少分?(精確到整數(shù)位);
(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在
高考總分沖擊600分,請(qǐng)你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和的距離之和的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以邊長(zhǎng)為4的等比三角形的頂點(diǎn)以及邊的中點(diǎn)為左、右焦點(diǎn)的橢圓過兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)且軸不垂直的直線交橢圓于兩點(diǎn),求證直線與的交點(diǎn)在一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形PBCD中,,,,A為PD的中點(diǎn),如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點(diǎn)E在SD上,且,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(1)求橢圓的方程式;
(2)已知?jiǎng)又本與橢圓相交于兩點(diǎn).
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為, , , , .
(1)求直方圖中的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),恒成立,求a的取值范圍.(其中,e=2.718…為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的一個(gè)短軸端點(diǎn)及兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,圓C方程為.
(1)求橢圓及圓C的方程;
(2)過原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)、時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com