若函數(shù)f(x)=
1
3
x3-
a
2
x2
+(3-a)x+b有三個不同的單調(diào)區(qū)間,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)函數(shù)f(x)=
1
3
x3-
a
2
x2
+(3-a)x+b有三個不同的單調(diào)區(qū)間,可知y′有正有負(fù),而導(dǎo)函數(shù)是二次函數(shù),故導(dǎo)函數(shù)的圖象與x軸有兩個交點(diǎn),△>0,即可求得a的取值范圍.
解答: 解:∵函數(shù)f(x)=
1
3
x3-
a
2
x2
+(3-a)x+b有三個不同的單調(diào)區(qū)間,
∴y′=x2-ax+(3-a)的圖象與x軸有兩個交點(diǎn),
∴△=a2-4(3-a)>0,
∴a>2或a<-6,
故答案為:a>2或a<-6.
點(diǎn)評:考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,把函數(shù)有三個單調(diào)區(qū)間,轉(zhuǎn)化為導(dǎo)函數(shù)的圖象與x軸的交點(diǎn)個數(shù)問題,體現(xiàn)了轉(zhuǎn)化的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}、{bn}中,{an}的前n項(xiàng)和為Sn,點(diǎn)(bn,n)、(n,Sn)分別在函數(shù)y=log2x及函數(shù)y=x2+2x的圖象上.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+10=0,求雙曲線
x2
4
-
y2
3
=1右支上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+10=0,求拋物線y2=4x上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-8y2=1(a>0)的離心率是
2
,拋物線C2:y2=2px的準(zhǔn)線過C1的左焦點(diǎn).
(1)求拋物線C2的方程;
(2)若A(x1,y1),B(x2,y2),C(x3,4)是C2上三點(diǎn),且CA⊥CB,證明:直線AB過定點(diǎn),并求出這個定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線f(x)=x2+1和g(x)=x3+x在其交點(diǎn)處兩切線的夾角為θ,求cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖,令an=f(
6
),則a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,b=7,c=3,B=60°,則a=(  )
A、5
B、6
C、4
3
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a、b、c滿足a-b-c=0則原點(diǎn)O(0,0)到直線ax+by+c=0的距離的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案