已知頂點為原點的拋物線的焦點與橢圓的右焦點重合在第一和第四象限的交點分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點為橢圓上的任一點,若直線、分別與軸交于點,證明:
(1);(2);(3)證明過程詳見試題解析.

試題分析:(1)由△AOB是邊長為的正三角形得到,代入拋物線方程中,可以得到所求拋物線方程為;(2)由可知點的橫坐標是,因此可結(jié)合建立關于的方程為:,解出;(3)利用設而不求的思想,可先設三點后代入橢圓方程中,由于的方程為,求出,那么化簡后得到:.
試題解析:(1)設橢圓的右焦點為,依題意得拋物線的方程為 
∵△是邊長為的正三角形,
∴點A的坐標是,
代入拋物線的方程解得
故所求拋物線的方程為
(2)∵, ∴ 點的橫坐標是
代入橢圓方程解得,即點的坐標是
∵ 點在拋物線上,

代入上式整理得:,
,解得
,故所求橢圓的離心率.
(3)證明:設,代入橢圓方程得

而直線的方程為
.
中,以代換
 .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知圓Ox2y2=3的半徑等于橢圓E=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線lyx的距離為,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).

(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設橢圓的離心率,頂點的距離為,為坐標原點.

(1)求橢圓的方程;
(2)過點作兩條互相垂直的射線,與橢圓分別交于兩點.
(。┰嚺袛帱c到直線的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓右焦點且斜率為1的直線被橢圓截得的弦MN的長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知焦點在x軸上的橢圓的離心率為,且它的長軸長等于圓C:x2+y2-2x-15=0的半徑,則橢圓的標準方程是(  )
A.+=1B.+=1
C.+y2=1D.+=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓=1上一點M作圓x2+y2=2的兩條切線,點A,B為切點.過A,B的直線l與x軸、y軸分別交于P,Q兩點,則△POQ的面積的最小值為(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線=1(a>0,b>0)與橢圓=1(m>b>0)的離心率之積大于1,則以a,b,m為邊長的三角形一定是(  )
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P是橢圓=1上的任意一點,F(xiàn)1、F2是它的兩個焦點,O為坐標原點,有一動點Q滿足,則動點Q的軌跡方程是________.

查看答案和解析>>

同步練習冊答案