5.某汽車(chē)銷(xiāo)售公司同時(shí)在甲、乙兩地銷(xiāo)售一種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為${L_1}=-{x^2}+21x$和L2=2x(其中銷(xiāo)售量單位:輛).若該公司在兩地一共銷(xiāo)售20輛,則能獲得的最大利潤(rùn)為( 。
A.130萬(wàn)元B.130.25萬(wàn)元C.120萬(wàn)元D.100萬(wàn)元

分析 由題意,設(shè)公司在甲地銷(xiāo)售x輛(0≤x≤20,x為正整數(shù)),則在乙地銷(xiāo)售(15-x)輛,公司獲得利潤(rùn)L=-x2+21x+2(20-x),利用二次函數(shù)求最值即可.

解答 解:設(shè)甲地銷(xiāo)售量為x輛,則乙地銷(xiāo)售量為15-x 輛,獲得的利潤(rùn)為L(zhǎng)(x)萬(wàn)元,則
L(x)=-x2+21x+2(20-x)(0≤x≤20,x∈N+
=-x2+19x+40,
所以,當(dāng)x=9或或x=10時(shí),利潤(rùn)最大,最大利潤(rùn)為130萬(wàn)元,
故選:A

點(diǎn)評(píng) 本題考查了學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)M(2,0),離心率為$\frac{1}{2}$.A,B是橢圓C上兩點(diǎn),且直線OA,OB的斜率之積為-$\frac{3}{4}$,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若射線OA上的點(diǎn)P滿足|PO|=3|OA|,且PB與橢圓交于點(diǎn)Q,求$\frac{|BP|}{|BQ|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體的體積為( 。
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=xlnx+mx,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為1.
(1)求實(shí)數(shù)m的值;
(2)設(shè)$g(x)=f(x)-\frac{a}{2}{x^2}-x+a({a∈R})$在定義域內(nèi)有兩個(gè)不同的極值點(diǎn)x1,x2,求a的取值范圍;
(3)已知λ>0,在(2)的條件下,若不等式${e^{1+λ}}<{x_1}•{x_2}^λ({{x_1}<{x_2}})$恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2-3mx+n(m>0)的兩個(gè)零點(diǎn)分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)-k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令$g(x)=\frac{f(x)}{x}$,若函數(shù)F(x)=g(2x)-r2x在x∈[-1,1]上有零點(diǎn),求實(shí)數(shù)r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.把數(shù)列{2n+1}依次按一項(xiàng)、二項(xiàng)、三項(xiàng)、四項(xiàng)循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100個(gè)括號(hào)內(nèi)的最后一個(gè)數(shù)字為501.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x-3≤0\end{array}\right.$則z=x+2y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.實(shí)數(shù)x,y滿足(x-y)2+y2=2,則x2+y2的最小值是3-$\sqrt{5}$,最大值是3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,an+1-an=3n+2n+1求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案