若直線y=kx+1與焦點(diǎn)在x軸上的橢圓
x2
5
+
y2
m
=1
總有公共點(diǎn),則實(shí)數(shù)m的取值范圍是
[1,5﹚
[1,5﹚
分析:先根據(jù)直線方程可知直線恒過(0,1)點(diǎn),要使直線y=kx+1與橢圓恒有公共點(diǎn)需(0,1)在橢圓上或橢圓內(nèi),進(jìn)而求得m的范圍.
解答:解:直線y=kx+1恒過點(diǎn)(0,1),
直線y=kx+1與橢圓恒有公共點(diǎn)
所以,(0,1)在橢圓上或橢圓內(nèi)
∴0+
1
m
≤1
∴m≥1
又∵橢圓
x2
5
+
y2
m
=1
焦點(diǎn)在x軸上,
∴0<m<5.
∴實(shí)數(shù)m的取值范圍是[1,5).
故答案為:[1,5).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.本題可采用數(shù)形結(jié)合的方法來解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),則k的值為( 。
A、-
3
3
B、
3
C、-
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的兩個(gè)焦點(diǎn)分別為F1(-2
2
,0)
、F2(2
2
,0)
,雙曲線上一點(diǎn)P到F1、F2的距離的差的絕對(duì)值等于4.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線y=kx-1與雙曲線C沒有公共點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(Ⅰ)若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù);
(Ⅲ)設(shè)a<b,比較f(
a+b
2
)
,
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一焦點(diǎn)在x軸上,中心在原點(diǎn)的雙曲線的實(shí)軸等于虛軸,且圖象經(jīng)過點(diǎn)
2,
3

(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個(gè)公共點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)已知函數(shù)f(x)=ex,x∈R.
(Ⅰ) 若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ) 設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
(Ⅲ) 設(shè)a<b,比較
f(a)+f(b)
2
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案