如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,點D是AB的中點.
求證:(1)AC⊥BC1;
(2)AC1∥平面B1CD.

證明:(1)在直三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,
∴CC1⊥AC,
又AC⊥BC,BC∩CC1=C,
∴AC⊥平面BCC1B1
∴AC⊥BC1
(2)設BC1與B1C的交點為O,連接OD,BCC1B1為平行四邊形,則O為B1C中點,又D是AB的中點,
∴OD是三角形ABC1的中位線,OD∥AC1,
又∵AC1?平面B1CD,OD?平面B1CD,
∴AC1∥平面B1CD.
分析:(1)利用線面垂直的判定定理先證明AC⊥平面BCC1B1,BC1?平面BCC1B1,即可證得AC⊥BC1
(2)取BC1與B1C的交點為O,連DO,則OD是三角形ABC1的中位線,OD∥AC1,而AC1?平面B1CD,利用線面平行的判定定理
即可得證.
點評:本題考查直線與平面的平行與垂直,著重考查直線與平面平行的判定定理與直線與平面垂直的判定定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

同步練習冊答案