(本小題滿分12分)為了調(diào)查甲、乙兩個(gè)交通站的車流量,隨機(jī)選取了14天,統(tǒng)計(jì)每天上午8∶00~12∶00間各自的車流量(單位:百輛),得如圖所示的統(tǒng)計(jì)圖,試求:

(1)甲、乙兩個(gè)交通站的車流量的極差分別是多少?

(2)甲交通站的車流量在間的頻率是多少?

(3)根據(jù)該莖葉圖結(jié)合所學(xué)統(tǒng)計(jì)知識(shí)分析甲、乙兩個(gè)交通站哪個(gè)站更繁忙?并說明理由.

 

【答案】

(1)甲:(白輛)乙:(白輛)(2)(3)甲,理由見解析

【解析】

試題分析:(1)甲交通站車流量的極差為(百輛),              ……2分

乙交通站車流量的極差為(百輛)                              ……4分

(2)甲交通站的車流量在間的頻率為.                        ……8分

(3)甲交通站的車流量集中在莖葉圖的下方,而乙交通站的車流量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,甲交通站更繁忙.                                ……12分

考點(diǎn):本小題主要考查了莖葉圖在統(tǒng)計(jì)中的應(yīng)用及對(duì)極差、頻率等概念的理解,考查了讀圖和識(shí)圖能力.

點(diǎn)評(píng):解決此類問題關(guān)鍵是弄清圖表中有關(guān)量的含義,掌握好統(tǒng)計(jì)的基礎(chǔ)知識(shí).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案