已知橢圓)過點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

(Ⅰ)(Ⅱ)直線恒過定點(diǎn)

解析試題分析:(Ⅰ)點(diǎn)在橢圓上,將其代入橢圓方程,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/59/8/1dhhs4.png" style="vertical-align:middle;" />,且,解方程組可得。(Ⅱ)點(diǎn)在直線上,則可得。當(dāng)直線的斜率存在時設(shè)斜率為,得到直線方程,聯(lián)立方程消掉得關(guān)于的一元二次方程。再根據(jù)韋達(dá)定理可得根與系數(shù)的關(guān)系。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6f/a/1t6oc4.png" style="vertical-align:middle;" />為中點(diǎn),根據(jù)點(diǎn)的橫坐標(biāo)解得。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/5/jnf27.png" style="vertical-align:middle;" />故可得直線的斜率,及其含參數(shù)的方程。分析可得直線是否恒過定點(diǎn)。注意還要再討論當(dāng)直線的斜率不存在的情況。
試題解析:解:(Ⅰ)因?yàn)辄c(diǎn)在橢圓上,所以,
所以,                   1分
因?yàn)闄E圓的離心率為,所以,即,    2分
解得,              4分
所以橢圓的方程為.                        5分
(Ⅱ)設(shè),
①當(dāng)直線的斜率存在時,設(shè)直線的方程為,,,
, 7分
所以,                             8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6f/a/1t6oc4.png" style="vertical-align:middle;" />為中點(diǎn),所以,即.
所以,                              9分
因?yàn)橹本,所以,
所以直線的方程為,即 ,
顯然直線恒過定點(diǎn).                           11分
②當(dāng)直線的斜率不存在時,直線的方程為
此時直線軸,也過點(diǎn).                     13分
綜上所述直線恒過定點(diǎn).                       14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動時,求點(diǎn)的軌跡方程;
(Ⅱ)已知是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過如下五個點(diǎn)中的三個點(diǎn):,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的一個焦點(diǎn)是(1,0),兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
對稱點(diǎn)為A1.求證:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為且與雙曲線有共同焦點(diǎn).
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點(diǎn)作的切線,求與坐標(biāo)軸圍成的三角形的面積的最小值;
(3)設(shè)橢圓的左、右頂點(diǎn)分別為,過橢圓上的一點(diǎn)軸的垂線交軸于點(diǎn),若點(diǎn)滿足,,連結(jié)于點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓過定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點(diǎn)P,且斜率為-的直線與曲線M相交于A、B兩點(diǎn). 問:△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案