14.已知函數(shù) y=lg(kx2+4x+k+3)的定義域?yàn)镽,則實(shí)數(shù)k的取值范圍(1,+∞).

分析 把函數(shù) y=lg(kx2+4x+k+3)的定義域?yàn)镽,轉(zhuǎn)化為kx2+4x+k+3>0對(duì)任意實(shí)數(shù)x恒成立,然后對(duì)k分類求解得答案.

解答 解:∵函數(shù) y=lg(kx2+4x+k+3)的定義域?yàn)镽,
∴kx2+4x+k+3>0對(duì)任意實(shí)數(shù)x恒成立,
若k=0,不等式化為4x+3>0,即x>-$\frac{3}{4}$,不合題意;
若k≠0,則$\left\{\begin{array}{l}{k>0}\\{16-4k(k+3)<0}\end{array}\right.$,解得k>1.
∴實(shí)數(shù)k的取值范圍是(1,+∞).
故答案為:(1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)滿足:(1)定義域?yàn)镽;(2)對(duì)任意的x∈R,有f(x+2)=2f(x);(3)當(dāng)x∈[-1,1]時(shí),$f(x)=cos\frac{π}{2}x$,若函數(shù)$g(x)=\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-5,5]上零點(diǎn)的個(gè)數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C:y2=4x,過(guò)點(diǎn)A(-1,0)的直線交拋物線C于P(x1,y1),Q(x2,y2)兩點(diǎn),設(shè)$\overrightarrow{AP}=λ\overrightarrow{AQ}$.
(Ⅰ)試求x1,x2的值(用λ表示);
(Ⅱ)若λ∈[$\frac{1}{3}$,$\frac{1}{2}$],求當(dāng)|PQ|最大時(shí),直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用數(shù)字2,3組成四位數(shù),則數(shù)字2,3至少都出現(xiàn)一次的四位數(shù)的概率是( 。
A.$\frac{1}{8}$B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各組函數(shù)中,是相等函數(shù)的是(  )
A.f(x)=x,g(x)=($\sqrt{x}}$)2B.f(x)=x+2,g(x)=$\frac{x^2-4}{x-2}$
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|ax2+ax+6=0},若集合A⊆{2,3},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.要證明“$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”可選擇的方法有以下幾種,其中最合理的是②(填序號(hào)).①反證法,②分析法,③綜合法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.有專業(yè)機(jī)構(gòu)認(rèn)為甲型H7N9禽流感在一段時(shí)間沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過(guò)15人”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是②④.
(填上所有正確的序號(hào))
①甲地:總體均值為6,中位數(shù)為8
②乙地:總體均值為5,方差不超過(guò)12
③丙地:中位數(shù)為5,眾數(shù)為6
④丁地:眾數(shù)為5,極差不超過(guò)10.

查看答案和解析>>

同步練習(xí)冊(cè)答案