2.根據(jù)下列條件,求直線(xiàn)方程(結(jié)果寫(xiě)成一般式)
(1)直線(xiàn)l過(guò)點(diǎn)(-1,2),且在x,y軸上的截距相等;
(2)直線(xiàn)m過(guò)點(diǎn)(2,1),并且到A(1,1)、B(3,5)兩點(diǎn)的距離相等.

分析 (1)分別討論直線(xiàn)l在x,y軸上的截距均為0,直線(xiàn)l在x,y軸上的截距不為0時(shí)的情況,求出直線(xiàn)方程即可;
(2)根據(jù)題意,求出經(jīng)過(guò)點(diǎn)(2,1)且與AB平行的直線(xiàn)方程和經(jīng)過(guò)(2,1)與AB中點(diǎn)的直線(xiàn)方程,即可得到滿(mǎn)足條件的直線(xiàn)方程.

解答 解:(1)①直線(xiàn)l在x,y軸上的截距均為0時(shí),2x+y=0;
②直線(xiàn)l在x,y軸上的截距不為0時(shí),
設(shè)要求的直線(xiàn)方程為:x+y=a,代入點(diǎn)(-1,2)可得a=1,
此時(shí)直線(xiàn)方程為x+y=1;
故所求直線(xiàn)方程是:2x+y=0或x+y=1.
(2)設(shè)所求直線(xiàn)為l,由條件可知直線(xiàn)l平行于直線(xiàn)AB或過(guò)線(xiàn)段AB的中點(diǎn),
①AB的斜率為$\frac{5-1}{3-1}$=2,當(dāng)直線(xiàn)l∥AB時(shí),l的方程是y-1=2(x-2),即 2x-y-3=0;
②當(dāng)直線(xiàn)l經(jīng)過(guò)線(xiàn)段AB的中點(diǎn)(2,3)時(shí),l的方程是 x-2=0;
故所求直線(xiàn)的方程為2x-y-3=0或x-2=0.

點(diǎn)評(píng) 著重考查了直線(xiàn)的斜率與直線(xiàn)方程等知識(shí),屬于基礎(chǔ)題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在含有2件次品的10件產(chǎn)品中,任取3件,求:
(1)取到的次品數(shù)X的分布列及數(shù)學(xué)期望;
(2)至少取到1件次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.記不等式x2+x-6<0的解集為集合A,函數(shù)y=lg(x-a)的定義域?yàn)榧螧.
(1)當(dāng)a=-1時(shí),求A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓C與y軸相切,圓心C在直線(xiàn)2x-y=0上,且被直線(xiàn)l:x-y+4=0分成兩段圓弧,其弧長(zhǎng)的比為3﹕1.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若以點(diǎn)D(-1,0)為圓心的圓D與圓C相交所得的弦長(zhǎng)為$2\sqrt{3}$,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)A為圓(x-2)2+(y-2)2=2上一動(dòng)點(diǎn),則A到直線(xiàn)x-y-4=0的最大距離為$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)f(x)=2x-lnx,x∈(0,e),則f(x)的最小值為( 。
A.2e-1B.1-ln2C.2-$\frac{1}{e}$D.1+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知2+$\frac{2}{3}$=22×$\frac{2}{3}$,3+$\frac{3}{8}$=32×$\frac{3}{8}$,4+$\frac{4}{15}$=42×$\frac{4}{15}$,…若9+$\frac{a}$=92×$\frac{a}$(a、b為正整數(shù)),則a+b等于( 。
A.89B.90C.98D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知直線(xiàn)l交拋物線(xiàn)y2=-3x于A、B兩點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=4(O是坐標(biāo)原點(diǎn)),設(shè)l與x軸的非正半軸交于點(diǎn)F,F(xiàn)、F′分別是雙曲線(xiàn)$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn).若在雙曲線(xiàn)的右支上存在一點(diǎn)P,使得2|$\overrightarrow{PF}$|=3|$\overrightarrow{PF'}$|,則a的取值范圍是[$\frac{4}{5}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿(mǎn)意度,采用“100分制”打分的方式來(lái)計(jì)分,規(guī)定滿(mǎn)意度不低于98分,則評(píng)價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,如圖莖葉圖記錄了他們對(duì)某教師的滿(mǎn)意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評(píng)價(jià)該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案