(本題滿分14分)已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實數(shù)k的取值范圍;

(文科(3)證明:  .

(理科(3)證明: .

 

【答案】

(1)當時,函數(shù)的遞增區(qū)間為,………2分

時,函數(shù)的遞增區(qū)間為,減區(qū)間為 

(2) (3)見解析

【解析】(1)的定義域為,,………1分

時,函數(shù)的遞增區(qū)間為,………2分

時,函數(shù)的遞增區(qū)間為,減區(qū)間為.………4分

(2)由,………5分

,則………6分

,函數(shù)遞增;當,函數(shù)遞減!8分

,………10分

(3)由(1)可知若,當時有,………11分

即有,即,即有 (x>1), ………12

(文)令,則,,………14

(理)令,則,,………13分

= (n>1)

思路分析:(1)先求出函數(shù)的定義域,求函數(shù)的導數(shù),討論分別求出函數(shù)的單調(diào)區(qū)間;

(2)分離參數(shù)求出函數(shù)的最大值即可;

(3)由(1)得時,,所以時有,即有,可得,令,則,

左右分別相加可證出文科的結(jié)論;理科令,求和再放縮可得結(jié)論。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省高三第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對于恒成立,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省惠州市高三第三次調(diào)研考試數(shù)學理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、,

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省惠州市高三第三次調(diào)研考試數(shù)學理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習冊答案