(本題6分)已知圓臺(tái)的母線長(zhǎng)為4 cm,母線與軸的夾角為30°,上底面半徑是下底面半徑的,求這個(gè)圓臺(tái)的側(cè)面積.
為S=π(r+2r)×4=24π(cm2)
本題考查圓臺(tái)的側(cè)面積公式,軸截面知識(shí),考查計(jì)算能力,是基礎(chǔ)題.畫出將圓臺(tái)還原為圓錐后的軸截面,設(shè)O1C=r,依據(jù)題目數(shù)據(jù)關(guān)系,求出r,利用圓臺(tái)側(cè)面積公式求解即可.
解:如圖是將圓臺(tái)還原為圓錐后的軸截面,

由題意知AC=4 cm,∠ASO=30°,
O1C=OA,
設(shè)O1C=r,則OA=2r,
=sin30°,
∴SC=2r,SA=4r,
∴AC=SA-SC=2r=4 (cm),
∴r=2 cm.
所以圓臺(tái)的側(cè)面積為S=π(r+2r)×4=24π(cm2)   6分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是矩形,⊥平面,,.

(1)求證:⊥平面;
(2)求二面角余弦值的大。
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,多面體EF﹣ABCD中,底面ABCD為等腰梯形,AB∥CD,四邊形ACFE為矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求證:BC⊥AF
(2)求平面BDF與平面CDF所成夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面,為等邊三角形.

(1)若,求證:平面平面
(2)若多面體的體積為,求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一空間幾何體的三視圖如圖,則該幾何體的體積為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若圓錐的側(cè)面展開圖是圓心角為1800,半徑為4的扇形,則這個(gè)圓錐的表面積是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在下列四個(gè)正方體中,能得出異面直線AB⊥CD的是(   ) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點(diǎn),現(xiàn)沿SE、SF、EF把這個(gè)正方形折成一個(gè)四面體,使G1、G2、G3重合為點(diǎn)G,則有(  )
A.SG⊥面EFGB.EG⊥面SEF
C.GF⊥面SEFD.SG⊥面SEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)四棱錐P-ABCD的底面不是平行四邊形, 用平面α去截此四棱錐(如右圖), 使得截面四邊形是平行四邊形, 則這樣的平面α 有(     )
A.不存在     B.只有1個(gè)
C.恰有4個(gè)    D.有無(wú)數(shù)多個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案