A. | (-∞,-1) | B. | (-1,1) | C. | (-∞,-1)∪(1,+∞) | D. | (1,+∞) |
分析 根據(jù)函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),可得函數(shù)在[0,+∞)上是減函數(shù),進而將f(x)<0,轉(zhuǎn)化為f(x)<f(1),即可確定x的取值范圍.
解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),
∴函數(shù)在[0,+∞)上是減函數(shù)
∵f(1)=0,f(x)<0
∴f(x)<f(1)
∴|x|>1
∴x<-1或x>1
∴使得f(x)<1的x的取值范圍是(-∞,-1)∪(1,+∞),
故選:C.
點評 本題以函數(shù)奇偶性為例,考查了用函數(shù)的性質(zhì)解不等式,屬于基礎(chǔ)題.解題時應(yīng)該注意函數(shù)單調(diào)性與奇偶性的內(nèi)在聯(lián)系,是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-2 | B. | y=2x+2 | C. | y=2x-1 | D. | y=2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=tan|x| | B. | y=|tanx| | C. | y=cot|x| | D. | y=|cotx| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{1003}$,$\frac{1}{20}$ | B. | $\frac{1000}{1003}$,$\frac{1}{20}$ | C. | $\frac{3}{1003}$,$\frac{50}{1003}$ | D. | $\frac{1000}{1003}$,$\frac{50}{1003}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y=z | B. | y2=x•z | C. | x2+y2=xy+xz | D. | 2y=x+z |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com