已知向量
a
=(2cosx,2sinx),向量
b
=(
3
cosx,cosx),函數(shù)f(x)=
a
b
-
3

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:平面向量及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用數(shù)量積運(yùn)算、倍角公式、兩角和差的正弦公式可得:函數(shù)f(x)=2sin(2x+
π
3
)
+
3
.即可得出函數(shù)f(x)的最小正周期..
(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,解得kπ-
12
≤x≤kπ+
π
12
,k∈Z.即可得出函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答: 解:(1)函數(shù)f(x)=
a
b
-
3

=2
3
cos2x+2sinxcosx

=
3
(1+cos2x)+sin2x

=2sin(2x+
π
3
)
+
3

∴函數(shù)f(x)的最小正周期T=
2
=π.
(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,解得kπ-
12
≤x≤kπ+
π
12
,k∈Z.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
12
,kπ+
π
12
]
(k∈Z).
點(diǎn)評:本題考查了向量的數(shù)量積運(yùn)算、倍角公式、兩角和差的正弦公式、三角函數(shù)的圖象與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,PO=
3
,AB=4,∠BAD=
π
3
,M為棱BC上一點(diǎn),且BM=1.
(1)求二面角B-AP-M的平面角的余弦值;
(2)在側(cè)棱PD上確定一點(diǎn)N,使ON∥平面APM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)h使得對于任意x∈M(M⊆D),有x+h∈M,且f(x+h)≥f(x),則稱f(x)為M上的h高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=(
1
2
x為R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③若函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
④函數(shù)f(x)=1g(|x-2|+1)上的2高調(diào)函數(shù).
其中正確命題的序號是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜四棱體ABCD-A1B1C1D1各棱長都是2,∠BAD=∠A1AD=60°,E、O分別是棱CC1和棱AD的中點(diǎn),平面ADD1A1⊥平面ABCD.
(1)求證:OC∥平面AED1
(2)求二面角E-AD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinx,cosx),
b
=(cosx,cosx),設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)=
a
b
的單調(diào)增區(qū)間;
(Ⅱ)若x∈[-
π
6
π
3
],求函數(shù)f(x)=的最值,并指出f(x)取得最值時(shí)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
,
b
,滿足|
a
|=4,|
b
|=2,且(
a
-
b
)•
b
=0,則
a
b
的夾角( 。
A、
5
6
π
B、
2
3
π
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
(1)若
BC
DA
,求y=f(x)的解析式
(2)在(1)的條件下,若
AC
BD
,求x與y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在映射f:A→B中f:(x,y)→(2x-y,x+y),則原像(-1,4)的像是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=
x
0
(sint+cost•sint)dt,則y的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案