△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若c=
3
,b=3,B=120°,則a等于(  )
A、
6
B、2
C、
3
D、
2
考點(diǎn):正弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將b,c,cosB的值代入即可求出a的值.
解答: 解:∵△ABC中,c=
3
,b=3,B=120°,
∴由余弦定理得:b2=a2+c2-2accosB,即9=a2+3+
3
a,
解得:a=
3
或a=-2
3
(舍去),
則a=
3

故選:C.
點(diǎn)評(píng):此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知任意角θ以x軸的正半軸為始邊,若終邊經(jīng)過點(diǎn)P(x0,y0)且|OP|=r(r>0).定義:sicosθ=
y0-x0
r
稱“sicosθ”為“正余弦函數(shù)”,對(duì)于“正余弦函數(shù)”y=sicosx,有同學(xué)得到以下性質(zhì):
(1)該函數(shù)的值域[-
2
2
];
(2)該函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱;
(3)該函數(shù)為非奇非偶函數(shù),圖象關(guān)于直線x=
4
對(duì)稱;
(4)該函數(shù)為周期函數(shù),且最小正周期為2π;
(5)該函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
π
4
,2kπ+
4
],k∈Z.
你認(rèn)為這些性質(zhì)正確的是
 
(填上你認(rèn)為正確的所有命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),
AO
=
OD
且λ
OA
+
OB
+
OC
=
0
,則實(shí)數(shù)λ=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x+y-3=0分別與函數(shù)y=3x和y=log3x的交點(diǎn)為A(x1,y1)、B(x2,y2),則2(y1+y2)=( 。
A、4B、6C、8D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},集合B滿足A∪B={1,2,3},A∩B={1},則集合B的子集個(gè)數(shù)是( 。
A、2B、3C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x2-x-2≥0
x2+x-2≤0
的解集用數(shù)軸表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足條件f(x+
3
2
)=-f(x),且函數(shù)y=f(x-
3
4
)是奇函數(shù),給出以下
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)對(duì)稱;
③函數(shù)f(x)是偶函數(shù):
④函數(shù)f(x)在R上是單調(diào)函數(shù).
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|x+1|-|x+2|>m有解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-1]
B、(-∞,-1)
C、(-∞,1]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知a2=4,a4=8,則a6=( 。
A、16B、16或-16
C、32D、32或-32

查看答案和解析>>

同步練習(xí)冊(cè)答案