在曲線y=1-x2(x≥0,y≥0)上找一點(diǎn)(x,y),過此點(diǎn)作一切線與x軸、y軸圍成一個(gè)三角形.
(1)求三角形面積S的最小值及相應(yīng)的x;
(2)當(dāng)三角形面積達(dá)到最小值時(shí),求此三角形的外接圓方程.
【答案】分析:(1)求出函數(shù)y=1-x2在(x,y)處的導(dǎo)數(shù)值,即切線的斜率,利用點(diǎn)斜式寫出直線的方程,對(duì)于直線的方程分別令y=0,x=0得到直線與坐標(biāo)軸的交點(diǎn)坐標(biāo),利用兩點(diǎn)距離公式求出三角形的兩條直角邊,利用三角形的面積表示出面積,對(duì)面積函數(shù)求導(dǎo)數(shù),令導(dǎo)數(shù)等于0,判斷出根左右兩邊的導(dǎo)函數(shù)符號(hào),求出最大值.
(2)當(dāng)三角形面積最小時(shí),求出此時(shí)的切線方程及切線與x、y軸的交點(diǎn)坐標(biāo),從而得出此三角形的外接圓圓心,半徑,從而寫出外接圓方程即可.
解答:解:(1)y'=-2x,則過點(diǎn)(x,y)的切線方程為y-(1-x2)=-2x(x-x),
與x、y軸圍成的三角形面積為,
,令S'=0得
當(dāng)時(shí),S'<0,f(x)單調(diào)遞減;  當(dāng)時(shí),S'>0,f(x)單調(diào)遞增.
∴S的最小值為,此時(shí)(7分)
(2)當(dāng)三角形面積最小時(shí),切線方程為,切線與x、y軸的交點(diǎn)分別為、,
∴此三角形的外接圓圓心為,半徑為,
∴所求外接圓方程(12分)
點(diǎn)評(píng):解決曲線的切線斜率問題,一般利用函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為切線的斜率;解決實(shí)際問題中的函數(shù)的最值問題,一般利用導(dǎo)數(shù)求出函數(shù)的極值即函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在曲線y=1-x2(x≥0,y≥0)上找一點(diǎn)(x0,y0),過此點(diǎn)作一切線與x軸、y軸圍成一個(gè)三角形.
(1)求三角形面積S的最小值及相應(yīng)的x0;
(2)當(dāng)三角形面積達(dá)到最小值時(shí),求此三角形的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在曲線y=1-x2(x≥0,y≥0)上找一點(diǎn)(x0,y0),過此點(diǎn)作一切線與x軸、y軸圍成一個(gè)三角形.
(1)求三角形面積S的最小值及相應(yīng)的x0;
(2)當(dāng)三角形面積達(dá)到最小值時(shí),求此三角形的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在曲線y=1-x2(x≥0,y≥0)上找一點(diǎn)(x0,y0),過此點(diǎn)作一切線與x軸、y軸圍成一個(gè)三角形.
(1)求三角形面積S的最小值及相應(yīng)的x0;
(2)當(dāng)三角形面積達(dá)到最小值時(shí),求此三角形的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省十堰一中高三(上)10月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在曲線y=1-x2(x≥0,y≥0)上找一點(diǎn)(x,y),過此點(diǎn)作一切線與x軸、y軸圍成一個(gè)三角形.
(1)求三角形面積S的最小值及相應(yīng)的x;
(2)當(dāng)三角形面積達(dá)到最小值時(shí),求此三角形的外接圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案