已知函數(shù)f(x)=4sin2(
π
4
+x)-2
3
cos2x-1
,且給定條件p:“
π
4
≤x≤
π
2
”,
(1)求f(x)的最大值及最小值
(2)若又給條件q:“|f(x)-m|<2“且p是q的充分條件,求實(shí)數(shù)m的取值范圍.
分析:(1)先根據(jù)兩角和與差的公式進(jìn)行化簡,再由x的范圍求出2x-
x
3
的范圍,再結(jié)合正弦函數(shù)的性質(zhì)可求出其最大、最小值.
(2)先根據(jù)|f(x)-m|<2求出f(x)的范圍,再由p是q的充分條件和(1)中f(x)的最大、最小值可得到m的范圍.
解答:解:(1)∵f(x)=2[1-cos(
π
2
+2x)]-2
3
cos2x-1=2sin2x-2
3
cos2x+1
=4sin(2x-
π
3
)+1.
又∵
π
4
≤x≤
π
2
,
π
6
≤2x-
x
3
3

即3≤4sin(2x-
π
3
)+1≤5
∴f(x)max=5,f(x)min=3
(2)∵|f(x)-m|<2,
∴m-2<f(x)<m+2
又p是q的充分條件
m-2<3
m+2>5

∴3<m<5.
點(diǎn)評:本題主要考查兩角和與差的公式的應(yīng)用和正弦函數(shù)的性質(zhì).高考中對三角函數(shù)的考查以基礎(chǔ)題為主,平時要注意對基礎(chǔ)知識的積累和運(yùn)用的靈活性的鍛煉.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,
1
8
),則a=
 
;若函數(shù)f(x)滿足對任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2
|x-3|-3
,則它是(  )
A、奇函數(shù)B、偶函數(shù)
C、既奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)
,
(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)當(dāng)-4≤x<3時,求f(x)取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,則M、N一定滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)畫出函數(shù)f(x)圖象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)當(dāng)-4≤x<3時,求f(x)取值的集合.

查看答案和解析>>

同步練習(xí)冊答案