有12名劃船運(yùn)動(dòng)員,其中3人只會(huì)劃左舷,4人只會(huì)劃右舷,其余5人既會(huì)劃左舷又會(huì)劃右舷,現(xiàn)在要從這12名運(yùn)動(dòng)員中選出6人平均分在左、右舷劃船參加比賽,則有
 
種不同的選法.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專(zhuān)題:排列組合
分析:分四類(lèi),第一類(lèi) 3個(gè)只會(huì)左舷的人全不選,第二類(lèi)3個(gè)只會(huì)左舷的人中只選1人,第三類(lèi)3個(gè)只會(huì)左舷的人中只選2人,第四類(lèi)3個(gè)只會(huì)左舷的人全選,根據(jù)分類(lèi)計(jì)數(shù)原理即得所求
解答: 解:分四類(lèi),第一類(lèi) 3個(gè)只會(huì)左舷的人全不選,有C30C53C63=200,
第二類(lèi)3個(gè)只會(huì)左舷的人中只選1人,有C31C52C73=1050,
第三類(lèi)3個(gè)只會(huì)左舷的人中只選2人,有C32C51C83=840,
第四類(lèi)3個(gè)只會(huì)左舷的人全選,有C33C93=84,
所以共有200+1050+840+84=2174.
故答案為:2174
點(diǎn)評(píng):本題主要考查了分類(lèi)計(jì)數(shù)原理,合理的分類(lèi)是解決的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若連續(xù)拋兩次骰子分別所得的點(diǎn)數(shù)a,b作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P在直線x+y=5下方的概率是(  )
A、
1
3
B、
1
4
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為調(diào)研高三一輪復(fù)習(xí)質(zhì)量,在2014年10月份組織了一次摸底考試,并從某校2015屆高三理科學(xué)生在該次考試的數(shù)學(xué)成績(jī)進(jìn)行分析,利用分層抽樣抽取90分以上的1200名學(xué)生的成績(jī)進(jìn)行分析,已知該樣本的容量為20,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到的頻率分布表如下:
分?jǐn)?shù)段(分)[90,110)[110,130)[130,150]
頻數(shù)4
頻率   a0.450.2
(Ⅰ)求表中a的值及分?jǐn)?shù)在[120,130)范圍內(nèi)的學(xué)生人數(shù);
(Ⅱ)從得分在(130,150]內(nèi)的學(xué)生隨機(jī)選2名學(xué)生的得分,求2名學(xué)生的平均分不低于140分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2cos2x,
3
),
b
=(1,sin2x),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期.
(2)若f(α-
π
3
)=2,α∈[
π
2
,π],求sin(2α+
π
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)的圖象過(guò)點(diǎn)(4,-1).
(1)求a的值;
(2)求證:f(x)在其定義域內(nèi)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=a分別與曲線y=2(x+1),y=x+lnx交于A、B,則|AB|的最小值為( 。
A、3
B、2
C、
3
2
D、
3
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,PA=AB=2,E,F(xiàn)分別為PD,AC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求點(diǎn)F到平面ABE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=
2
a點(diǎn)E是SD上的點(diǎn),且DE=λa(0<λ≤2)
(1)求證:對(duì)任意的λ∈(0,2],都有AC⊥BE;
(2)設(shè)二面角C-AE-D的大小為θ,直線BE與平面ABCD所成的角為φ,若cosθ=sinφ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中分別作出下列各角,并指出它們是第幾象限的角:
(1)60°;(2)-210°;(3)225°;(4)-300°.

查看答案和解析>>

同步練習(xí)冊(cè)答案