【題目】選修4-4:坐標系與參數(shù)方程
已知在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(Ⅰ) 求曲線與交點的平面直角坐標;
(Ⅱ) 點分別在曲線, 上,當最大時,求的面積(為坐標原點).
科目:高中數(shù)學 來源: 題型:
【題目】定義:在等式 中,把, , ,…, 叫做三項式的次系數(shù)列(如三項式的1次系數(shù)列是1,1,1).
(1)填空:三項式的2次系數(shù)列是_______________;
三項式的3次系數(shù)列是_______________;
(2)由楊輝三角數(shù)陣表可以得到二項式系數(shù)的性質(zhì),類似的請用三項式次系數(shù)列中的系數(shù)表示 (無須證明);
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓: 的離心率為,直線l:y=2上的點和橢圓上的點的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點為A,點B,C是上的不同于A的兩點,且點B,C關(guān)于原點對稱,直線AB,AC分別交直線l于點E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1) 求函數(shù)的解析式;
(2) 如何由函數(shù)的通過適當圖象的變換得到函數(shù)的圖象, 寫出變換過程;
(3) 若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-1|+|2x-1|.
(Ⅰ)若對x>0,不等式f(x)≥tx恒成立,求實數(shù)t的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數(shù)a,b滿足a2+b2=2M.證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過橢圓: 的左右焦點分別作直線, 交橢圓于與,且.
(1)求證:當直線的斜率與直線的斜率都存在時, 為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com