A. | $\sqrt{13}$ | B. | $\sqrt{63}$ | C. | $\frac{4\sqrt{33}}{3}$ | D. | $\frac{3\sqrt{33}}{2}$ |
分析 求出拋物線的焦點(diǎn),設(shè)直線l為x=my+1,代入拋物線方程,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,解得m,求出P的坐標(biāo),即可得出結(jié)論.
解答 解:拋物線y2=6x的焦點(diǎn)為(1.5,0),
設(shè)直線l為x=my+1.5,代入拋物線方程可得,y2-6my-9=0,
設(shè)A(x1,y1),B(x2,y2),
則y1+y2=6m,y1y2=-9,
由$\overrightarrow{MF}$=2$\overrightarrow{FN}$,可得y1=-2y2,
由代入法,可得m=±$\frac{\sqrt{2}}{4}$,
∴直線l為x=±$\frac{\sqrt{2}}{4}$y+1.5,
令x=-1.5,可得y=±6$\sqrt{2}$,
∴|OP|=$\sqrt{2.25+72}$=$\frac{3\sqrt{33}}{2}$,
故選D.
點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系的綜合應(yīng)用,主要考查韋達(dá)定理和向量的共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com