已知函數(shù)f(x)=
2x-1
2x+1
,試討論函數(shù)f(x)的單調(diào)性.
考點:函數(shù)單調(diào)性的判斷與證明
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求f′(x),根據(jù)f′(x)的符號即可判斷函數(shù)f(x)的單調(diào)性.
解答: 解:f′(x)=
2xln2(2x+1)-(2x-1)2xln2
(2x+1)2
=
2x+1ln2
(2x+1)2
>0,函數(shù)f(x)的定義域為R;
∴函數(shù)f(x)在R上是增函數(shù).
點評:考查函數(shù)的商的導(dǎo)數(shù)的求法,及求函數(shù)導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)符號判斷函數(shù)單調(diào)性的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(3,-1),則
a
-
b
=( 。
A、(5,0)
B、(-1,0)
C、(-1,2)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,點P(1,f(1))在函數(shù)y=f(x)的圖象上,過P點的切線方程為y=3x+1.
(1)若y=f(x)在x=-2時有極值,求f(x)的解析式;
(2)若函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍;
(3)在(1)的條件下是否存在實數(shù)m,使得不等式f(x)≥m在區(qū)間[-2,1]上恒成立,若存在,試求出m的最大值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的始邊在x軸的非負(fù)半軸,頂點在原點,終邊上一點P為(-5,12).
(1)求sinα,tanα;
(2)化簡并求值:
cos(
π
2
+α)sin(-π-α)
sin(
11π
2
-α)sin(
2
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=1,c=
2
,cosC=
3
4

(1)求sinA的值;
(2)求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)x,y,z,
(1)滿足x+y+z=1,求證:
1
x
+
4
y
+
9
z
≥36;
(2)若x+y=1,求(x+
1
x
)(y+
1
y
)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E,F(xiàn)分別為棱長為2的正方體ABCD-A1B1C1D1的棱B1C1,A1D1的中點,問在棱A1B1上是否有一點G,使得AG∥面FBED1,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,側(cè)面PAD與側(cè)面PAB都是以A為直角頂點的直角三角形,底面ABCD是直角梯形,AD∥BC,∠ABC=90°,AB=4,BC=3,AD=5,E是CD的中點.
(Ⅰ)證明:平面PCD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)對①進(jìn)行因式分解并求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
1
a1(a1+1)
+
1
a2(a2+1)
+…+
1
an(an+1)
1
3

查看答案和解析>>

同步練習(xí)冊答案