已知數(shù)列滿足,向量,.
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),若對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.
(1);(2).

試題分析:(1)先利用向量垂直結(jié)合向量坐標(biāo)運(yùn)算得到,并在等式兩邊同時(shí)除以得到,結(jié)合定義證明數(shù)列為等差數(shù)列,并確定其首項(xiàng)和公差,求出數(shù)列的通項(xiàng)公式,進(jìn)而求出數(shù)列的通項(xiàng)公式;(2)先確定數(shù)列的通項(xiàng)公式,將不等式等價(jià)轉(zhuǎn)化為,利用作商法研究數(shù)列的單調(diào)性,并確定數(shù)列的最小項(xiàng),解不等式
求出實(shí)數(shù)的取值范圍.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051316592433.png" style="vertical-align:middle;" />,所以
,,
所以數(shù)列為等差數(shù)列,且;
(2)可知,令,得,
即當(dāng),都有,
,故
從而,解得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿足:,其中為實(shí)數(shù),為正整數(shù).
(1)對(duì)任意實(shí)數(shù),求證:不成等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.
(3)設(shè)為數(shù)列的前項(xiàng)和.是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2012•廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=2,an=2-(n≥2,n∈N*).
(1)設(shè)bn,n∈N*,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)的公差大于零的等差數(shù)列,已知.
(1)求的通項(xiàng)公式;
(2)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足,給出下列命題:
①當(dāng)時(shí),數(shù)列為遞減數(shù)列
②當(dāng)時(shí),數(shù)列不一定有最大項(xiàng)
③當(dāng)時(shí),數(shù)列為遞減數(shù)列
④當(dāng)為正整數(shù)時(shí),數(shù)列必有兩項(xiàng)相等的最大項(xiàng)
請(qǐng)寫(xiě)出正確的命題的序號(hào)____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)對(duì)應(yīng)關(guān)系如表所示,數(shù)列{an}滿足a1=3,an+1=f(an),則a2015=________.
x
1
2
3
f(x)
3
2
1
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{}中,=-5,它的前11項(xiàng)的平均值是5,若從中抽取1項(xiàng),余下10項(xiàng)的平均值是4,則抽取的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列前15項(xiàng)的和=30,則=___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案