【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個(gè)國(guó)家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國(guó)家或地區(qū)直接宣布“封國(guó)”或“封城”,隨著國(guó)外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬(wàn)家) | 5.28 | 4.72 | 3.58 | 2.70 | 2.15 |
倒閉企業(yè)所占比例 | 21.4% | 19.1% | 14.5% | 10.9% | 8.7% |
(1)由所給數(shù)據(jù)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.
參考數(shù)據(jù):,,,,
相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.
【答案】(1)詳見解析;(2);預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例為
【解析】
(1)由題意計(jì)算出相關(guān)的數(shù)據(jù),代入公式即可得,由相關(guān)系數(shù)的意義即可得解;
(2)由題意求出所需數(shù)據(jù),代入公式求得、后,即可求得線性回歸方程,代入即可預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例.
(1)由表中數(shù)據(jù)及參考數(shù)據(jù)可得,
,,,
由可得,
所以,
所以,
因?yàn)?/span>與的相關(guān)系數(shù)近似為,說明與的相關(guān)程度很高,從而可以用線性回歸模型擬合與的關(guān)系;
(2)由題意,
再結(jié)合(1)中數(shù)據(jù)可得,
則,
所以關(guān)于的回歸方程為;
當(dāng)時(shí),,
所以預(yù)測(cè)年成立的企業(yè)中倒閉企業(yè)所占比例為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為自然對(duì)數(shù)的底數(shù)),若對(duì)于恒成立.
(1)求實(shí)數(shù)的值;
(2)證明:存在唯一極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底面ABCD為梯形,,,,,E為PC的中點(diǎn).
證明:平面PAD;
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問卷調(diào)查.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.
(1)估計(jì)該社區(qū)居民最近一年來網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);
(2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱為“網(wǎng)購(gòu)迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購(gòu)迷與性別有關(guān)系”
男 | 女 | 總計(jì) | |
網(wǎng)購(gòu)迷 | 20 | ||
非網(wǎng)購(gòu)迷 | 45 | ||
總計(jì) | 100 |
附:.
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)的導(dǎo)函數(shù)為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)是上的“雙中值函數(shù)“,則實(shí)數(shù)m的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣x﹣2>0},函數(shù)g(x)=的定義域?yàn)榧?/span>B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且CA,求實(shí)數(shù)P的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定正整數(shù).將三種水果分裝在個(gè)箱子中.試求最小的正整數(shù),使得無論水果如何分布,總可選出個(gè)箱子,它們所裝的三種水果都不少于各自總量的一半.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com