17.如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥BC;
(2)求三棱錐D-ABC的體積.

分析 (1)先證明BC⊥平面PAC,再證明AD⊥平面PBC,進而可得AD⊥BC;
(2)三棱錐D-ABC的體積即為三棱錐B-ADC的體積,進而得到答案.

解答 解:(1)證明:因為PA⊥平面ABC,所以PA⊥BC,

又AC⊥BC,所以BC⊥平面PAC,
所以BC⊥AD.…(3分)
由三視圖可得,
在△PAC中,PA=AC=4,D為PC中點,
所以AD⊥PC,
所以AD⊥平面PBC
又因為BC?面PBC,
故AD⊥BC…(6分)
(2)由三視圖可得BC=4,
由(1)知∠ADC=90°,BC⊥平面PAC…(9分)
又三棱錐D-ABC的體積即為三棱錐B-ADC的體積,
所以,所求三棱錐的體積$V=\frac{1}{3}×\frac{1}{2}×4×\frac{1}{2}×4×4=\frac{16}{3}$…(12分)

點評 本題考查的知識點是空間直線與平面垂直的判定與性質(zhì),棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.集合A={x||x|≤4,x∈R},B={x|x<a},則“A⊆B”是“a>5”的必要不充分條件(在“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇一項填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x2•f′(2)+3x,則f′(2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在正方體ABCD-A1B1C1D1中,異面直線AD1,B1C所成的角的度數(shù)為90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是一正方體的表面展開圖,MN和PB是兩條面對角線,則在正方體中,直線MN與直線PB的位置關(guān)系為(  )
A.相交B.平行C.異面D.重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.冪函數(shù)y=f(x)經(jīng)過點(4,2),則f(x)是(  )
A.偶函數(shù),且在(0,+∞).上是增函數(shù)
B.偶函數(shù),且在(0,+∞)上是減函數(shù)
C.奇函數(shù),且在(0,+∞)上是減函數(shù)
D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.化簡:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在邊長為3的等邊三角形ABC中,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,2$\overrightarrow{BC}$+$\overrightarrow{BA}$=3$\overrightarrow{BE}$,則|$\overrightarrow{DE}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xoy中,O為坐標(biāo)原點,已知點Q(1,2),P是動點,且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求點P的軌跡C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積;
(3)過點D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點A,B和M,N,設(shè)線段AB,MN的中點分別為E,F(xiàn).求證:直線EF恒過一定點.

查看答案和解析>>

同步練習(xí)冊答案