【題目】已知函數(shù), .

(1)當時,求在點的切線方程;

(2)若對 恒成立,求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)當時,

, ,由點斜式可求出在點的切線方程;

2)求出的導數(shù),通過討論的范圍,確定函數(shù)的單調區(qū)間,從而求出a的范圍.

試題解析:(1)當時,

, ,

故在點的切線方程為,

化簡得

(2)

的定義域為.

①若,令,得極值點, ,

,即時,

上有,在上有,在上有,

此時在區(qū)間上是增函數(shù),

并且在該區(qū)間上有,不合題意;

,即時,同理可知, 在區(qū)間上恒有, 在區(qū)間上是增函數(shù),

,也不合題意;

②若,則有,此時在區(qū)間上恒有,

上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足即可,可得,

的范圍是.

綜合①②可知,當時,對, 恒成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線lyt(t≠0)交y軸于點M,交拋物線Cy2=2px(p>0)于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.

(1)求;

(2)除H以外,直線MHC是否有其它公共點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點與短軸兩個端點的連線互相垂直.

1)求橢圓的標準方程;

2)設點為橢圓的上一點,過原點且垂直于的直線與直線交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市高中全體學生參加某項測評,按得分評為兩類(評定標準見表1).根據(jù)男女學生比例,使用分層抽樣的方法隨機抽取了10000名學生的得分數(shù)據(jù),其中等級為的學生中有40%是男生,等級為的學生中有一半是女生.等級為的學生統(tǒng)稱為類學生,等級為的學生統(tǒng)稱為類學生.整理這10000名學生的得分數(shù)據(jù),得到如圖2所示的頻率分布直方圖,

類別

得分(

表1

(I)已知該市高中學生共20萬人,試估計在該項測評中被評為類學生的人數(shù);

(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學生”的概率;

(Ⅲ)在這10000名學生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷的大。ㄖ恍鑼懗鼋Y論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

求函數(shù)圖象恒過的定點坐標

恒成立,的值;

(Ⅲ)在(Ⅱ)成立的條件下,證明: 存在唯一的極小值點,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求過點的切線方程;

(2)當時,求函數(shù)的最大值;

(3)證明:當時,不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,一個焦點坐標是,離心率為.

(1)求橢圓的標準方程;

(2)過作直線交橢圓于兩點, 是橢圓的另一個焦點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明: ;

(Ⅲ)若,求的最小值.

查看答案和解析>>

同步練習冊答案