精英家教網 > 高中數學 > 題目詳情
15.已知中心在原點,焦點在坐標軸上的橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)它的離心率為$\frac{{\sqrt{3}}}{3}$,一個焦點是(-1,0),過直線x=3上一點M引橢圓E的兩條切線,切點分別是A和B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(x0,y0)處的切線方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.求證:直線AB恒過定點,并求出定點的坐標;
(Ⅲ)記點C為(Ⅱ)中直線AB恒過的定點,問是否存在實數λ,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立,若成立求出λ的值,若不存在,請說明理由.

分析 (Ⅰ)設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點是(-1,0),故c=1,再由離心率為$\frac{{\sqrt{3}}}{3}$,求出a和b的值,從而求得橢圓E的方程;
(Ⅱ)設切點坐標為A(x1,y1),B(x2,y2),直線l上一點M的坐標(3,t),求出切線方程,再把點M代入切線方程,說明點A,B的坐標都適合方$x+\frac{t}{2}y=1$,而兩點之間確定唯一的一條直線,從而求出定點;
(Ⅲ)將直線AB的方程$x+\frac{t}{2}y=1$,代入橢圓方程,求出兩根的積和兩根的和,求出$\overrightarrow{|AC|}$,$\overrightarrow{|BC|}$的長,求出λ的值看在不在,再進行判斷.

解答 (Ⅰ)解:設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點是(-1,0),故c=1,
又$\frac{c}{a}=\frac{{\sqrt{3}}}{3}$,∴$a=\sqrt{3},b=\sqrt{2}$,
∴所求的橢圓E的方程為$\frac{x^2}{3}+\frac{y^2}{2}=1$;
(Ⅱ)證明:設切點坐標為A(x1,y1),B(x2,y2),直線l上一點M的坐標(3,t),
則切線方程分別為$\frac{{{x_1}x}}{3}+\frac{{{y_1}y}}{2}=1$,$\frac{{{x_2}x}}{3}+\frac{{{y_2}y}}{2}=1$,
又兩切線均過點M,即${x_1}+\frac{t}{2}{y_1}=1$,${x_2}+\frac{t}{2}{y_2}=1$,即點A,B的坐標都適合方程$x+\frac{t}{2}y=1$,
故直線AB的方程是$x+\frac{t}{2}y=1$,顯然直線$x+\frac{t}{2}y=1$恒過點(1,0),故直線AB恒過定點(1,0);
(Ⅲ)解:將直線AB的方程$x+\frac{t}{2}y=1$,代入橢圓方程,
得$(\frac{t^2}{2}+3){y^2}-2ty-4=0$,
∴${y_1}+{y_2}=\frac{4t}{{{t^2}+6}},{y_1}{y_2}=\frac{-8}{{{t^2}+6}}$,不妨設y1>0,y2<0,
則$|{\overrightarrow{AC}}|=\frac{{\sqrt{{t^2}+4}}}{2}{y_1}$,同理$|{\overrightarrow{BC}}|=-\frac{{\sqrt{{t^2}+4}}}{2}{y_2}$,
∴$\frac{1}{{|{\overrightarrow{AC}}|}}+\frac{1}{{|{\overrightarrow{BC}}|}}=\frac{2}{{\sqrt{{t^2}+4}}}(\frac{1}{y_1}-\frac{1}{y_2})=\frac{2}{{\sqrt{{t^2}+4}}}•\frac{{\sqrt{48({t^2}+4)}}}{8}=\sqrt{3}$.
即$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=\sqrt{3}|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$,
故存在實數λ=$\sqrt{3}$,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立.

點評 本題考查橢圓的標準方程,考查直線與圓錐曲線的綜合,考查運算求解能力,注意解題方法的積累,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.已知扇形的圓心角為$\frac{π}{5}$,半徑等于20,則扇形的弧長為( 。
A.B.$\frac{200}{π}$C.D.$\frac{100}{π}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.某工廠生產甲、乙兩種產品,每種產品都分為正品與次品.其中生產甲產品為正品的概率是$\frac{4}{5}$,生產乙產品為正品的概率是$\frac{3}{4}$;生產甲乙兩種產品相互獨立,互不影響.生產一件甲產品,若是正品可盈利40元,若是次品則虧損5元;生產一件乙產品,若是正品可盈利50元,若是次品則虧損10元.計算以下問題:
(Ⅰ)記X為生產1件甲產品和1件乙產品所得的總利潤,求隨機變量X的分布列和數學期望;
(Ⅱ)求生產4件產品甲所獲得的利潤不少于110元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知m,n是不重合的直線,α,β是不重合的平面,有下列命題
①若α∩β=n,m∥n,則m∥α,m∥β;     
②若m⊥α,m⊥β,則α∥β;
③若m∥α,m⊥n,則n⊥α;             
④若m⊥α,n?α,則m⊥n;
其中所有真命題的序號是( 。
A.②④B.②③C.①④D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知某公司現有職員150人,其中中級管理人員30人,高級管理人員10人,要從公司抽取30個人進行身體健康檢查,如果采用分層抽樣的方法,則職員中“中級管理人員”和“高級管理人員”各應該抽取的人數為(  )
A.8,2B.8,3C.6,3D.6,2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.如圖:Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
(1)建立適當的坐標系,求曲線E的標準方程;
(2)過B點且傾斜角為120°的直線l交曲線E于M,N兩點,求|MN|的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.在直角坐標系xOy中,已知點P(1,-2),直線$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t為參數),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ,直線l和曲線C的交點為A、B.
(1)求直線l和曲線C的普通方程;
(2)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知圓C:x2+y2=4,直線l:ax+y+2a=0,當直線l與圓C相交于A,B兩點,且|AB|=2$\sqrt{2}$時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)當m=2時,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案