【題目】某加工廠用某原料由車間加工出A產品,由乙車間加工出B產品.甲車間加工一箱原料需耗費工時10小時可加工出7千克A產品,每千克A產品獲利40元.乙車間加工一箱原料需耗費工時6小時可加工出4千克B產品,每千克B產品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產計劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

【答案】B
【解析】解答:設甲車間加工原料x箱, 乙車間加工原料y箱,

目標函數(shù)z=280x+300y
結合圖象可得:當x=15,y=55時z最大.
故選B.
分析:本題考查的知識點是簡單線性規(guī)劃的應用,根據(jù)題意列出不等式組,找出目標函數(shù)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】仙游某家具城生產某種家具每件成本為3萬元,每件售價為x萬元(x>3),月銷量為t件,經驗表明,t= +10(x﹣6)2 , 其中3<x<6,a為常數(shù).已知銷售價格為5萬元時,月銷量為11件.
(1)求a的值;
(2)求售價定為多少時,該家具的月利潤最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=ax3+blog2(x+ )+2在(﹣∞,0)上有最小值﹣5,(a,b為常數(shù)),則函數(shù)f(x)在(0,+∞)上( )
A.有最大值5
B.有最小值5
C.有最大值3
D.有最大值9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x),f(0)≠0,當x>0時,f(x)>1,對任意的a,b∈R都有f(a+b)=f(a)f(b)且對任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)證明:函數(shù)y=f(x)在R上是增函數(shù);
(3)若f(x)f(2x﹣x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD.在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設探照燈照射在正方形ABCD內部區(qū)域的面積S(平方百米),求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式的解集是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在R上的偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調遞減,若f(1﹣m)<f(m),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x(|x|+4),且f(a2)+f(a)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當x∈[0,+∞)時,f(x)=2x+x﹣m(m為常數(shù)).
(1)求常數(shù)m的值.
(2)求f(x)的解析式.
(3)若對于任意x∈[﹣3,﹣2],都有f(k4x)+f(1﹣2x+1)>0成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案