如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FAn交拋物線(xiàn)于另一點(diǎn)Bn(Sn,tn).Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).

(1)求證∠AnCnBn=90o;

(2)求證點(diǎn)Cn的縱坐標(biāo)是一個(gè)定值,并求這個(gè)定值;

(3)若|FC1|、|FC2|、|FC3|、…、|FCn|構(gòu)成首項(xiàng)為3,公比為2的等比數(shù)列,求|A1B1|+|A2B2|+|A3B3|+…+|AnBn|.

答案:
解析:

  證明:(1)對(duì)任意固定的因?yàn)榻裹c(diǎn)F(0,1),所以可設(shè)直線(xiàn)的方程為

  將它與拋物線(xiàn)方程聯(lián)立得,

  由一元二次方程根與系數(shù)的關(guān)系得……★

  對(duì)任意固定的利用導(dǎo)數(shù)知識(shí)易得拋物線(xiàn)處的切線(xiàn)的斜率

  故處的切線(xiàn)的方程為: ,……①

  類(lèi)似地,可求得處的切線(xiàn)的方程為:,……②

  又故∠AnCnBn=90o

  (2)又由②-①得:,

  ……③

  將③代入①并注意得交點(diǎn)的縱坐標(biāo)為-1.

  (3)由拋物線(xiàn)定義知,,又

  故

  而由兩點(diǎn)間的距離公式得:

  故

  故

  所以

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FAn交拋物線(xiàn)于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市高考真題 題型:證明題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FAn交拋物線(xiàn)于另一點(diǎn)Bn(sn,tn),
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1(n≥1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(22)如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FA.交拋物線(xiàn)于另一點(diǎn)Bn(sn,tn).

(Ⅰ)試證:xnsn=-4(n≥1);

(Ⅱ)取xn=2n,并記Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).試證:

|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年江蘇省南通市啟東中學(xué)高三(上)12月階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FAn交拋物線(xiàn)于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線(xiàn)x2=4y上的點(diǎn),過(guò)焦點(diǎn)F的直線(xiàn)FAn交拋物線(xiàn)于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線(xiàn)上分別以An與Bn為切點(diǎn)的兩條切線(xiàn)的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案