已知m,n是不同的直線,α,β是不同的平面,則下列條件能使n⊥α成立的是


  1. A.
    α⊥β,m?β
  2. B.
    α∥β,n⊥β
  3. C.
    α⊥β,n∥β
  4. D.
    m∥α,n⊥m
B
分析:n⊥α必有n平行α的垂線,或者n垂直α的平行平面,依次判定選項(xiàng)即可.
解答:α⊥β,m?β,不能說明n與α的關(guān)系,A錯(cuò)誤;
α∥β,n⊥β能夠推出n⊥α,正確;
α⊥β,n∥β可以得到n與平面α平行、相交,所以不正確.
m∥α,n⊥m則n與平面α可能平行,所以不正確.
故選B.
點(diǎn)評(píng):本題考查直線與平面垂直的判定,考查空間想象能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、已知m、n是不同的直線,α、β是不重合的平面.命題p:若α∥β,m?α,n?β,則m∥n;
命題q:若m⊥α,n⊥β,m∥n,則α∥β.下面的命題中,①p∨q;②p∧q;③p∨非q;④非p∧q.真命題的序號(hào)是
①④
(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、已知m、n是不同的直線,α、β是不重合的平面,給出下列命題:
①若m∥α,則m平行于α內(nèi)的無數(shù)條直線;
②若α∥β,m?α,n?β,則m∥n;
③若m⊥α,n⊥β,m∥n,則α∥β;
④若α∥β,m?α,則m∥β;
⑤若α⊥β,α∩β=m,n經(jīng)過α內(nèi)的一點(diǎn),n⊥m,則n⊥β.
上面命題中,真命題的序號(hào)是
①③④
(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知m,n是不同的直線,α,β是不同的平面,則“n⊥α”的一個(gè)充分不必要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是
③④
(寫出所有真命的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是不同的直線,α,β是不重合的平面,給出下面三個(gè)命題:
①若α∥β,m?α,n?β,則m∥n.
②若m、n?α,m∥β,n∥β,則α∥β.
③若m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,正確的序號(hào)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案