【題目】在班級活動中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學式,結(jié)果用數(shù)字作答)

(1)三名女生不能相鄰,有多少種不同的站法?

(2)四名男生相鄰有多少種不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?

(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學身高互不相等)

【答案】(1)1440(2)576(3)3720(4)840

【解析】分析:(1)采取“插空法”可得結(jié)果;(2)采取“捆綁法可得結(jié)果;(3)分甲在右端”、“甲不在兩端”兩種情況討論,然后求和即可;(4)先把七個人全排列,再除以即可.

詳解(1)=1440;(2)=576;(3)=3720;(4)=840 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣ax,a∈R
(1)若f(x)在P(x0 , y0)(x∈[ ))處的切線方程為y=﹣2,求實數(shù)a的值;
(2)若x1 , x2(x1<x2)是函數(shù)f(x)的兩個零點,f′(x)是函數(shù)f(x)的導函數(shù),證明:f′( )<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知,證明: ;

(2)已知 ,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的普通方程為在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為寫出圓C的參數(shù)方程和直線l的直角坐標方程;設直線lx軸和y軸的交點分別為AB,P為圓C上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,a,b,c分別是角A、B、C的對邊,向量 =(2sinB,2﹣cos2B), =(2sin2 + ),﹣1)且
(1)求角B的大;
(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l極坐標方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標方程為ρ=4sinθ.以極點為原點,極軸為x軸建立直角坐標系(1)寫出直線l與圓M的直角標方程;

(2)設直線l與圓M交于A、B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.

(1)求 的值;
(2)設AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當k≥2時,若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當2≤k≤n時,恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

同步練習冊答案