【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.

【答案】
(1)解:由已知可得,f(x)=3cosωx+ sinωx=2 sin(ωx+ ),

又正三角形ABC的高為2 ,從而BC=4,

∴函數(shù)f(x)的周期T=4×2=8,即 =8,ω=

∴函數(shù)f(x)的值域?yàn)閇﹣2 ,2 ]


(2)解:∵f(x0)= ,由(1)有f(x0)=2 sin( x0+ )= ,

即sin( x0+ )= ,由x0∈(﹣ , ),知 x0+ ∈(﹣ , ),

∴cos( x0+ )=

∴f(x0+1)=2 sin[( x0+ )+ ]=2 [sin( x0+ )cos +cos( x0+ )sin ]

=2 × + × )=


【解析】(1)將f(x)化簡(jiǎn)為f(x)=2 sin(ωx+ ),利用正弦函數(shù)的周期公式與性質(zhì)可求ω的值及函數(shù)f(x)的值域;(2)由x0∈(﹣ , ),知 x0+ ∈(﹣ , ),由f(x0)= ,可求得sin( x0+ )= ,利用兩角和的正弦公式即可求得f(x0+1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式(組)
(1)2x23x5≥( x+2
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿足約束條件: ;則z=x﹣2y的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若先將函數(shù)y= sin(x﹣ )+cos(x﹣ )圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的 倍,再將所得圖象向左平移 個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸的方程是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為(1,0),A,B是拋物線上位于x軸兩側(cè)的兩動(dòng)點(diǎn),且 =﹣4(O為坐標(biāo)原點(diǎn)).
(1)求拋物線方程;
(2)證明:直線AB過(guò)定點(diǎn)T;
(3)過(guò)點(diǎn)T作AB的垂線交拋物線于M,N兩點(diǎn),求四邊形AMBN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港口的水深y(米)是時(shí)間t(0≤t≤24,單位:小時(shí))的函數(shù),下面是每天時(shí)間與水深的關(guān)系表:

t

0

3

6

9

12

15

18

21

24

y

10

13

9.9

7

10

13

10.1

7

10

經(jīng)過(guò)長(zhǎng)期觀測(cè),y=f(t)可近似的看成是函數(shù)y=Asinωt+b
(1)根據(jù)以上數(shù)據(jù),求出y=f(t)的解析式;
(2)若船舶航行時(shí),水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時(shí)間可以安全的進(jìn)出該港?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,且 =
(1)求A的大。
(2)當(dāng) 時(shí),求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ< , x∈R)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[﹣ , ]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案