(2013•東莞一模)已知數(shù)列{an}的前n項和為Sn,數(shù)列{Sn+1}是公比為2的等比數(shù)列,a2是a1和a3的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn
分析:(1)由數(shù)列{an}的前n項和為Sn,數(shù)列{Sn+1}是公比為2的等比數(shù)列,知Sn+1=2n-1,(S1+1)=2n-1(a1+1),Sn-1+1=2n-2(a1+1),故an=2n-2(a1+1),n≥2,由此能求出an=2n-1
(2)由an=2n-1,知nan=n×2n-1,故Tn=1×20+2×21+3×22+…+n×2n-1,由此利用錯位相減法能求出數(shù)列{nan}的前n項和Tn
解答:解:(1)∵數(shù)列{an}的前n項和為Sn,數(shù)列{Sn+1}是公比為2的等比數(shù)列,
∴Sn+1=2n-1(S1+1)=2n-1(a1+1)①
Sn-1+1=2n-2(a1+1)②
①-②得
an=2n-2(a1+1),n≥2
a2=a1+1,
a3=2(a1+1)
a2是a1和a3的等比中項,故
a22=a1a3,
(a1+1)2=a1•2(a1+1),
解得a1=1,(a1=-1則a2=0不合題意舍去)
故an=2n-1
(2)由an=2n-1,知nan=n×2n-1,
∴Tn=1×20+2×21+3×22+…+n×2n-1,①
2Tn=1×21+2×22+3×23+…+n×2n,②
②-①得
Tn=n×2n-(20+21+22+23+…+2n-1
=n×2n-
1-2n
1-2

=n×2n-2n+1.
點評:本題考查數(shù)列的通項公式和前n項和公式的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在同一平面直角坐標(biāo)系中,已知函數(shù)y=f(x)的圖象與y=ex的圖象關(guān)于直線y=x對稱,則函數(shù)y=f(x)對應(yīng)的曲線在點(e,f(e))處的切線方程為
x-ey=0
x-ey=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)已知函數(shù)f(x)=lnx-
ax
,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)h(x)=x2-mx+4,當(dāng)a=2時,若?x1∈(0,1),?x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)已知函數(shù)f(x)=
(
1
3
)
x
,x≥3
f(x+1),x<3
,則f(2+log32)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在等差數(shù)列{an}中,若a1+a5+a9=
π
4
,則tan(a4+a6)=
3
3
3
3

查看答案和解析>>

同步練習(xí)冊答案