【題目】設(shè),函數(shù).

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若無(wú)零點(diǎn),求a的取值范圍;

(3)若有兩個(gè)相異零點(diǎn)、,求證:.

【答案】(1) (2) (3)見(jiàn)證明

【解析】

1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,再根據(jù)點(diǎn)斜式得結(jié)果,(2)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點(diǎn)討論函數(shù)單調(diào)性,根據(jù)單調(diào)性確定函數(shù)最大值,最后根據(jù)最大值小于零得結(jié)果.3)根據(jù)零點(diǎn)解得,化簡(jiǎn)欲證不等式,再令,構(gòu)造關(guān)于t的函數(shù),利用導(dǎo)數(shù)證不等式.

解:(1)當(dāng)時(shí),,所以.

,

則切線方程為,即

(2)①當(dāng)時(shí),有唯一零點(diǎn);

②當(dāng)時(shí),則,是區(qū)間上的增函數(shù),

因?yàn)?/span>,

所以,即函數(shù)在區(qū)間有唯一零點(diǎn);

③當(dāng)時(shí),令,

所以,當(dāng)時(shí),,函數(shù)在區(qū)間上是增函數(shù);

;

當(dāng)時(shí),,函數(shù)是在上是減函數(shù),

;

所以在區(qū)間上,函數(shù)的極大值為

,即,解得,

故所求實(shí)數(shù)的取值范圍是.

(3)設(shè),由,可得,. 所以

要證,只需證,

即證,即.

,于是,

設(shè)函數(shù),求導(dǎo)得,

所以函數(shù)上的增函數(shù),

所以,即不等式成立,

故所證不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)F為橢圓C(ab0)的左焦點(diǎn),點(diǎn)AB分別為橢圓C的右頂點(diǎn)和上頂點(diǎn),點(diǎn)P(,)在橢圓C上,且滿足OPAB

1)求橢圓C的方程;

2)若過(guò)點(diǎn)F的直線l交橢圓CD,E兩點(diǎn)(點(diǎn)D位于x軸上方),直線ADAE的斜率分別為,且滿足=﹣2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且過(guò)焦點(diǎn)的最短弦長(zhǎng)為3.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)分別是橢圓的左、右焦點(diǎn),過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的箱子中裝有大小形狀相同的5個(gè)小球,其中2個(gè)白球標(biāo)號(hào)分別為,,3個(gè)紅球標(biāo)號(hào)分別為,,現(xiàn)從箱子中隨機(jī)地一次取出兩個(gè)球.

(1)求取出的兩個(gè)球都是白球的概率;

(2)求取出的兩個(gè)球至少有一個(gè)是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.

(1)當(dāng)時(shí),判斷曲線與曲線的位置關(guān)系;

(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時(shí),求曲線上到曲線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間上任取一個(gè)數(shù)記為b

a,,求直線的斜率為的概率;

a,,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),函數(shù)在區(qū)間上的最大值是2,則______

查看答案和解析>>

同步練習(xí)冊(cè)答案