分析 根據(jù)題意求出函數(shù)的導(dǎo)數(shù),進(jìn)而求出切線的斜率,即可得到切線方程.
解答 解:由題意可得:曲線的方程為:y=e2x,
所以y′=2e2x,
所以K切=y′|x=$\frac{1}{2}$1n3=$2{e}^{2×\frac{1}{2}ln3}$=6,
曲線y=e2x在x=$\frac{1}{2}$1n3處的切點坐標(biāo)($\frac{1}{2}$1n3,3).
所以曲線y=e2x在x=$\frac{1}{2}$1n3處的切線方程為:y-3=6(x-$\frac{1}{2}$1n3).
即6x-y+3-3ln3=0.
故答案為:6x-y+3-3ln3=0.
點評 本題主要考查導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10個 | B. | 9個 | C. | 8個 | D. | 7個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
表1 | 非統(tǒng)計專業(yè) | 統(tǒng)計專業(yè) |
男 | 13 | 10 |
女 | 7 | 20 |
P(K2≥k0) | 0.05 | 0.025 | 0.01 | 0.005 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 |
A. | 5% | B. | 2.5% | C. | 1% | D. | 0.5% |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com