5.下列對(duì)古典概型的說(shuō)法中正確的是( 。
①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
②每個(gè)事件出現(xiàn)的可能性相等;
③每個(gè)基本事件出現(xiàn)的可能性相等;
④基本事件總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,則P(A)=$\frac{k}{n}$.
A.②④B.①③④C.①④D.③④

分析 利用隨機(jī)試驗(yàn)的概念及古典概型及其概率計(jì)算公式直接求解.

解答 解:在①中,由隨機(jī)試驗(yàn)的定義知:試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè),故①正確;
在②中,由隨機(jī)試驗(yàn)的定義知:每個(gè)基本事件出現(xiàn)的可能性相等,故②錯(cuò)誤;
在③中,由隨機(jī)試驗(yàn)的定義知:每個(gè)基本事件出現(xiàn)的可能性相等,故③正確;
④基本事件總數(shù)為n,隨機(jī)事件A若包含k個(gè)基本事件,
則由古典概型及其概率計(jì)算公式知P(A)=$\frac{k}{n}$,故④正確.
故選:B.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意隨機(jī)試驗(yàn)的概念及古典概型及其概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知a>0,b>0,且4a+b-ab=0,則 a+b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={-3,-2,-1,0,1,2},B={x|(x+3)(x-1)<0},則A∩B=( 。
A.{0,1,2}B.{-2,-1,0}C.{-3,-2,-1,0,1}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某地西紅柿從2月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到西紅柿種植成本Q(單位:元/10kg)與上市時(shí)間t(單位:元)的數(shù)據(jù)如表:
時(shí)間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù)判斷,函數(shù)Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt中哪一個(gè)適宜作為描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系?簡(jiǎn)要說(shuō)明理由;
(2)利用你選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{5}}}{5}$,短半軸的長(zhǎng)為2.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點(diǎn)為F,上頂點(diǎn)為A,與直線FA平行的直線l與橢圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知x=1,x=5是函數(shù)f(x)=cos(ωx+φ)(ω>0)兩個(gè)相鄰的極值點(diǎn),且f(x)在x=2處的導(dǎo)數(shù)f′(2)<0,則f(0)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD與BC交于點(diǎn)M,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM}$;
(2)在線段AC上取一點(diǎn)E,在線段BD上取一點(diǎn)F,使EF過(guò)M點(diǎn),設(shè)$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$,求證:$\frac{1}{7p}$+$\frac{3}{7q}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=e2x-1的零點(diǎn)是0.

查看答案和解析>>

同步練習(xí)冊(cè)答案